SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 André Luís Mendonça(andre.luis@lsbd.ufc.br)
2 Felipe Brito(felipe.timbo@lsbd.ufc.br)
3 Javam Machado(javam.machado@lsbd.ufc.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Brito, F. T., Farias, V. A., Flynn, C., Majumdar, S., Machado, J. C., and Srivastava, D. (2023). Global and local differentially private release of count-weighted graphs. Proceedings of the ACM on Management of Data, 1(2):1–25.
2 Brito, F. T. and Machado, J. C. (2017). Preservação de privacidade de dados: Fundamentos, técnicas e aplicações. Jornadas de atualização em informática, pages 91–130.
3 Dwork, C. (2006). Differential privacy. In International colloquium on automata, languages, and programming, pages 1–12. Springer.
4 Farias, V. A., Brito, F. T., Flynn, C., Machado, J. C., Majumdar, S., and Srivastava, D. (2023). Local dampening: Differential privacy for non-numeric queries via local sensitivity. The VLDB Journal, pages 1–24.
5 Hay, M., Li, C., Miklau, G., and Jensen, D. (2009). Accurate estimation of the degree distribution of private networks. In International Conference on Data Mining, pages 169–178. IEEE.
6 Kasiviswanathan, S. P., Nissim, K., Raskhodnikova, S., and Smith, A. (2013). Analyzing graphs with node differential privacy. In Theory of Cryptography Conference, pages 457–476. Springer.
7 Kearns, M. and Roth, A. (2019). The ethical algorithm: The science of socially aware algorithm design. Oxford University Press.
8 Knoke, D. and Yang, S. (2019). Social network analysis. SAGE publications.
9 Silva, R. R. C., Leal, B. C., Brito, F. T., Vidal, V. M., and Machado, J. C. (2017). A differentially private approach for querying rdf data of social networks. In International Database Engineering & Applications Symposium, pages 74–81.
10 Xia, S., Chang, B., Knopf, K., He, Y., Tao, Y., and He, X. (2021). Dpgraph: A benchmark platform for differentially private graph analysis. In International Conference on Management of Data, pages 2808–2812.