1 |
Backstrom, L., Dwork, C., and Kleinberg, J. (2007). Wherefore art thou r3579x? anonymi- zed social networks, hidden patterns, and structural steganography. In WWW’07, pages 181–190.
|
|
2 |
de Lourdes Maia Silva, M., Chaves, I. C., and Machado, J. C. (2021). Private reverse top-k algorithms applied on public data of COVID-19 in the state of ceará. J. Inf. Data Manag., 12(5).
|
|
3 |
de Oliveira, D., Neto, E. R. D., et al. (2019). Um estudo comparativo de mecanismos de privacidade diferencial sobre um dataset de ocorrências do ZIKV no brasil. In Proc. of the 34th SBBD, pages 253–258. SBC
|
|
4 |
Duggan, J., Elmore, A. J., Stonebraker, M., Balazinska, M., Howe, B., Kepner, J., Madden, S., Maier, D., Mattson, T., and Zdonik, S. (2015). The bigdawg polystore system. ACM Sigmod Record, 44(2):11–16
|
|
5 |
Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006). Calibrating noise to sensitivity in private data analysis. In Theory of cryptography conference, pages 265–284. Springer.
|
|
6 |
Dwork, C., Roth, A., et al. (2014). The algorithmic foundations of differential privacy. Foundations and Trends® in Theoretical Computer Science, 9(3–4):211–407.
|
|
7 |
Erlingsson, Ú., Pihur, V., and Korolova, A. (2014). Rappor: Randomized aggregatable privacy-preserving ordinal response. In SIGSAC’14, pages 1054–1067.
|
|
8 |
Ge, C., He, X., Ilyas, I. F., and Machanavajjhala, A. (2019). Apex: Accuracy-aware diffe- rentially private data exploration. In SIGMOD ’19, pages 177–194
|
|
9 |
Johnson, N., Near, J. P., and Song, D. (2018). Towards practical differential privacy for sql queries. Proceedings of the VLDB Endowment, 11(5):526–539
|
|
10 |
Kraska, T., Stonebraker, M., Brodie, M. L., Servan-Schreiber, S., and Weitzner, D. J. (2019). Schengendb: A data protection database proposal. In Poly’19, volume 11721, pages 24– 38. Springer
|
|
11 |
Machanavajjhala, A., Kifer, D., Gehrke, J., and Venkitasubramaniam, M. (2007). l-diversity: Privacy beyond k-anonymity. ACM TKDD, 1(1):3–es
|
|
12 |
McSherry, F. D. (2009). Privacy integrated queries: an extensible platform for privacy- preserving data analysis. In SIGMOD’09, pages 19–30
|
|
13 |
Mendes, Y., de Oliveira, D., and Ströele, V. (2020). Polyflow: a polystore-compliant me- chanism to provide interoperability to heterogeneous provenance graphs. J. Inf. Data Manag., 11(3)
|
|
14 |
Nargesian, F., Zhu, E., Miller, R. J., Pu, K. Q., and Arocena, P. C. (2019). Data lake management: Challenges and opportunities. Proc. VLDB Endow., 12(12):1986–1989.
|
|
15 |
Proserpio, D., Goldberg, S., and McSherry, F. (2014). Calibrating data to sensitivity in private data analysis: A platform for differentially-private analysis of weighted datasets. PVLDB, 7(8):637–648.
|
|
16 |
Ramos, L. F. M. and Silva, J. a. M. C. (2019). Privacy and data protection concerns regarding the use of blockchains in smart cities. In ICEGOV’2019, page 342–347, Melbourne, Australia. ACM.
|
|
17 |
Sweeney, L. (2002). k-anonymity: A model for protecting privacy. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(05):557–570
|
|
18 |
Warner, S. L. (1965). Randomized response: A survey technique for eliminating evasive answer bias. Journal of the American Statistical Association, 60(309):63–69.
|
|