1 |
Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., and Zhang, L. (2016). Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC conference on computer and communications security, pages 308–318.
|
|
2 |
Bojarski, M., Choromanska, A., Choromanski, K., and LeCun, Y. (2014). Differentiallyand non-differentially-private random decision trees. arXiv preprint arXiv:1410.6973.
|
|
3 |
Breiman, L. (2001). Random forests. Machine learning, 45:5–32.
|
|
4 |
Breiman, L. (2017). Classification and regression trees. Routledge.
|
|
5 |
Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages 785–794.
|
|
6 |
Chollet, F. (2021). Deep learning with Python. Simon and Schuster.
|
|
7 |
Dahouda, M. K. and Joe, I. (2021). A deep-learned embedding technique for categorical features encoding. IEEE Access, 9:114381–114391.
|
|
8 |
Danandeh Mehr, A. (2021). Drought classification using gradient boosting decision tree Acta Geophysica, 69(3):909–918.
|
|
9 |
Dwork, C. (2006). Differential privacy. In International colloquium on automata, languages, and programming, pages 1–12. Springer.
|
|
10 |
Ferry, J., Fukasawa, R., Pascal, T., and Vidal, T. (2024). Trained random forests completely reveal your dataset. arXiv preprint arXiv:2402.19232.
|
|
11 |
Friedman, J. H. (2002). Stochastic gradient boosting. Computational statistics & data analysis, 38(4):367–378.
|
|
12 |
Li, Q., Wu, Z., Wen, Z., and He, B. (2020). Privacy-preserving gradient boosting decision trees. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 784–791.
|
|
13 |
Liu, X., Li, Q., Li, T., and Chen, D. (2018). Differentially private classification with decision tree ensemble. Applied Soft Computing, 62:807–816.
|
|
14 |
M. Silva, M. d. L., C. Chaves, I., and C. Machado, J. (2020). Private reverse top-k algorithms applied on public data of covid-19 in the state of ceará. Journal of Information and Data Management, 12(5).
|
|
15 |
McSherry, F. D. (2009). Privacy integrated queries: an extensible platform for privacypreserving data analysis. In ACM SIGMOD Int. Conf. on Management of data, pages 19–30.
|
|
16 |
Opitz, D. and Maclin, R. (1999). Popular ensemble methods: An empirical study. Journal of artificial intelligence research, 11:169–198.
|
|
17 |
Pennacchiotti, M. and Popescu, A.-M. (2011). A machine learning approach to twitter user classification. In Proceedings of the international AAAI conference on web and social media, volume 5, pages 281–288.
|
|
18 |
Seger, C. (2018). An investigation of categorical variable encoding techniques in machine learning: binary versus one-hot and feature hashing.
|
|
19 |
Shokri, R., Stronati, M., Song, C., and Shmatikov, V. (2017). Membership inference attacks against machine learning models. In 2017 IEEE symposium on security and privacy (SP), pages 3–18. IEEE.
|
|
20 |
Si, S., Zhang, H., Keerthi, S. S., Mahajan, D., Dhillon, I. S., and Hsieh, C.-J. (2017). Gradient boosted decision trees for high dimensional sparse output. In International conference on machine learning, pages 3182–3190. PMLR.
|
|
21 |
Truex, S., Liu, L., Gursoy, M. E., Yu, L., and Wei, W. (2018). Towards demystifying membership inference attacks. arXiv preprint arXiv:1807.09173.
|
|
22 |
Wood, A., Altman, M., Bembenek, A., Bun, M., Gaboardi, M., Honaker, J., Nissim, K., O’Brien, D. R., Steinke, T., and Vadhan, S. (2018). Differential privacy: A primer for a non-technical audience. Vand. J. Ent. & Tech. L., 21:209.
|
|
23 |
Zhao, L., Ni, L., Hu, S., Chen, Y., Zhou, P., Xiao, F., and Wu, L. (2018). Inprivate digging: Enabling tree-based distributed data mining with differential privacy. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications, pages 2087–2095. IEEE.
|
|