1 |
Campagna, D. P., da Silva, A. S., and Braganholo, V. (2020). Achieving gdpr compliance through provenance: An extended model. In Simpósio Brasileiro de Banco de Dados (SBBD), pages 13–24. SBC.
|
|
2 |
Fleder, M. and Shah, D. (2020). I know what you bought at chipotle for $9.81 by solving a linear inverse problem. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 4(3):1–17.
|
|
3 |
Huang, C., Wu, X., Zhang, X., Zhang, C., Zhao, J., Yin, D., and Chawla, N. V. (2019). Online purchase prediction via multi-scale modeling of behavior dynamics. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 2613–2622.
|
|
4 |
Ładyzynski, P., Zbikowski, K., and Gawrysiak, P. (2019). Direct marketing campaigns in retail banking with the use of deep learning and random forests. Expert Systems with Applications, 134:28–35.
|
|
5 |
Li, J., Pan, S., Huang, L., et al. (2019). A machine learning based method for customer behavior prediction. Tehniˇcki vjesnik, 26(6):1670–1676.
|
|
6 |
Li, Q., Chen, Z., and Zhao, H. V. (2021). Prima++: A probabilistic framework for user choice modelling with small data. IEEE Transactions on Signal Processing, 69:1140–1153.
|
|
7 |
Martens, D. (2022). Data science ethics: Concepts, techniques, and cautionary tales. Oxford University Press.
|
|
8 |
Martínez, A., Schmuck, C., Pereverzyev Jr, S., Pirker, C., and Haltmeier, M. (2020). A machine learning framework for customer purchase prediction in the non-contractual setting. European Journal of Operational Research, 281(3):588–596.
|
|
9 |
Nery, C., Galante, R., and Cordeiro, W. (2021). FIP-SHA - finding individual profiles through shared accounts. In Strauss, C., Kotsis, G., Tjoa, A. M., and Khalil, I., editors, Database and Expert Systems Applications - 32nd International Conference, DEXA 2021, Virtual Event, September 27-30, 2021, Proceedings, Part II, volume 12924 of Lecture Notes in Computer Science, pages 115–126. Springer.
|
|
10 |
Neto, E. R., Mendonça, A. L., Brito, F. T., and Machado, J. C. (2018). Privlbs: uma abordagem para preservação de privacidade de dados em serviços baseados em localização. In Simpósio Brasileiro de Banco de Dados (SBBD), pages 109–120. SBC.
|
|
11 |
Pinheiro, P. P. (2020). Proteção de dados pessoais: Comentários à lei n. 13.709/2018-lgpd. Saraiva Educação SA.
|
|
12 |
Rendle, S., Freudenthaler, C., and Schmidt-Thieme, L. (2010). Factorizing personalized markov chains for next-basket recommendation. In Proceedings of the 19th international conference on World wide web, pages 811–820.
|
|
13 |
Ruiz, F. J., Athey, S., and Blei, D. M. (2020). Shopper: A probabilistic model of consumer choice with substitutes and complements.
|
|
14 |
Safara, F. (2022). A computational model to predict consumer behaviour during covid-19 pandemic. Computational Economics, 59(4):1525–1538.
|
|
15 |
Sarkar, M. and De Bruyn, A. (2021). Lstm response models for direct marketing analytics: Replacing feature engineering with deep learning. Journal of Interactive Marketing, 53(1):80–95.
|
|
16 |
Suarez Mariscal, C., de Lima, B. S. M., Galante, R., and Cordeiro, W. (2023). Assessing explainable recommendations from knowledge graph-based in an international streaming platform. In Proceedings of the 29th Brazilian Symposium on Multimedia and the Web, WebMedia ’23, page 213–220, New York, NY, USA. Association for Computing Machinery.
|
|
17 |
Tabianan, Kayalvily e Velu, S. e. R. V. (2022). K-means clustering approach for intelligent customer segmentation using customer purchase behavior data. Sustainability, 14(12):7243.
|
|
18 |
Vasupula, NarsingRao e Munnangi, V. e. D. S. (2022). Modern privacy risks and protection strategies in data analytics. In Soft Computing and Signal Processing: Proceedings of 3rd ICSCSP 2020, Volume 2, pages 81–89. Springer.
|
|
19 |
Wachter, S., Mittelstadt, B., and Russell, C. (2017). Counterfactual explanations without opening the black box: Automated decisions and the gdpr. Harv. JL & Tech., 31:841.
|
|
20 |
Wang, W., Xiong, W., Wang, J., Tao, L., Li, S., Yi, Y., Zou, X., and Li, C. (2023). A user purchase behavior prediction method based on xgboost. Electronics, 12(9):2047.
|
|
21 |
Wen, Y.-T., Yeh, P.-W., Tsai, T.-H., Peng, W.-C., and Shuai, H.-H. (2018). Customer purchase behavior prediction from payment datasets. In Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, pages 628–636.
|
|
22 |
Wieringa, J., Kannan, P., Ma, X., Reutterer, T., Risselada, H., and Skiera, B. (2021). Data analytics in a privacy-concerned world. Journal of Business Research, 122:915–925.
|
|
23 |
Yadav, S. and Shukla, S. (2016). Analysis of k-fold cross-validation over hold-out validation on colossal datasets for quality classification. In 2016 IEEE 6th International conference on advanced computing (IACC), pages 78–83. IEEE.
|
|
24 |
Yuan, Q., Zhang, W., Zhang, C., Geng, X., Cong, G., and Han, J. (2017). Pred: Periodic region detection for mobility modeling of social media users. In Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pages 263–272.
|
|
25 |
Zhou, M., Ding, Z., Tang, J., and Yin, D. (2018). Micro behaviors: A new perspective in e-commerce recommender systems. In Proceedings of the eleventh ACM international conference on web search and data mining, pages 727–735.
|
|
26 |
Zhu, B., Tang, W., Mao, X., and Yang, W. (2020). Location-based hybrid deep learning model for purchase prediction. In 2020 5th International Conference on Computational Intelligence and Applications (ICCIA), pages 161–165. IEEE.
|
|