SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Ronald Martins(ronaldmartins@aluno.fiocruz.br)
2 Marcelo Gomes(marcelo.gomes@fiocruz.br)
3 Ernesto Caffarena(ernesto.caffarena@fiocruz.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Cheng, F., Liu, C., Jiang, J., Lu, W., Li, W., Liu, G., Zhou, W., Huang, J., Tang, Y., 2012. Prediction of Drug-Target Interactions and Drug Repositioning via Network-Based Inference. PLoS Comput. Biol. 8, e1002503. https://doi.org/10.1371/journal.pcbi.1002503 Ezzat, A., Wu, M., Li, X.-L., Kwoh, C.-K., 2019. Computational prediction of drug–target interactions using chemogenomic approaches: an empirical survey. Brief. Bioinform. 20, 1337–1357. https://doi.org/10.1093/bib/bby002 Martins, S.R., da Costa Gomes, M.F., Caffarena, R.E., 2022. Combining network-based and matrix factorization to predict novel drug-target interactions: A case study using the Brazilian natural chemical database. Curr. Bioinforma. 17, 1–1. https://doi.org/10.2174/1574893617666220820105258 Reker, D., Schneider, P., Schneider, G., Brown, J., 2017. Active learning for computational chemogenomics. Future Med. Chem. 9, 381–402. https://doi.org/10.4155/fmc-2016- 0197 Zheng, X., Ding, H., Mamitsuka, H., Zhu, S., 2013. Collaborative matrix factorization with multiple similarities for predicting drug-target interactions, in: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, Chicago Illinois USA, pp. 1025–1033. https://doi.org/10.1145/2487575.2487670