SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Geovana Souza(geovana21@alu.ufc.br)
2 Thiago Souza(thiagoiachiley@ufc.br)
3 Nicole Batista(nicolesouza@alu.ufc.br)
4 Bruno Bertoncini(bruviber@det.ufc.br)
5 Danielo Gomes(danielo@ufc.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Alves, M. L. A. (2023). Repoair: Desenvolvimento do repositório de dados para monitoramento da qualidade do ar. Trabalho de conclusão de curso (graduação em engenharia civil), Universidade Federal do Ceará, Fortaleza. Orientador: Prof. Dr. Bruno Vieira Bertoncini.
2 Asgari, M., Yang, W., and Farnaghi, M. (2022). Spatiotemporal data partitioning for distributed random forest algorithm: Air quality prediction using imbalanced big spatio- temporal data on spark distributed framework. Environmental Technology Innovation, 27:102776.
3 Biancofiore, F., Busilacchio, M., Verdecchia, M., Tomassetti, B., Aruffo, E., Bianco, S., Tommaso, S. D., Colangeli, C., Rosatelli, G., and Carlo, P. D. (2017). Recursive neural network model for analysis and forecast of pm10 and pm2.5. Atmospheric Pollution Research, 8:652–659.
4 Cengil, E. (2025). The power of machine learning methods and pso in air quality prediction. Applied Sciences, 15:2546.
5 Chojer, H., Branco, P., Martins, F., Alvim-Ferraz, M., and Sousa, S. (2020). Development of low-cost indoor air quality monitoring devices: Recent advancements. Science of The Total Environment, 727:138385.
6 DESA, U. (2023). The sustainable development goals report 2023: Special edition - july 2023. Technical report, Disponível em: https://unstats.un.org/sdgs/repor t/2023/. Acesso em: 11 marc¸ 2025.
7 Deveer, L. and Minet, L. (2025). Real-time air quality prediction using traffic videos and machine learning. Transportation Research Part D, 142:104688.
8 Galli, L., Galvan, G., Sciandrone, M., Cantù, M., and Tomaselli, G. (2018). Machine learning methods for short-term bid forecasting in the renewable energy market: A case study in italy. Windy Energy, 21.
9 Goudarzi, G., Shirmardi, M., Naimabadi, A., Ghadiri, A., and Sajedifar, J. (2019). Chemical and organic characteristics of pm2.5 particles and their in-vitro cytotoxic effects on lung cells: The middle east dust storms in ahvaz, iran. Science of The Total Environment, 655:434–445.
10 Jairi, I., Ben-Othman, S., Canivet, L., and Zgaya-Biau, H. (2024). Enhancing air pollution prediction: A neural transfer learning approach across different air pollutants. Environmental Technology Innovation, 36.
11 Kawichai, S., Sripan, P., Rerkasem, A., Rerkasem, K., and Srisukkham, W. (2025). Longterm retrospective predicted concentration of pm2.5 in upper northern thailand using machine learning models. Toxics, 13:170.
12 Lakra, A. R., Gautam, S., Samuel, C., and Blaga, R. (2025). College bus commuter exposures to air pollutants in indian city: The urban-rural transportation exposure study. Geosystems and Geoenvironment, 4:100346.
13 Li, Y. and Sun, Y. (2021). Modeling and predicting city-level co2 emissions using open access data and machine learning. Environmental Science and Pollution Research, 28:19260–19271.
14 Rahman, M., Nayeem, E. H., Ahmed, S., Tanha, K. A., Sakib, S. A., Hafiz, K. M. M. U. ., and Babu, H. (2024). Airnet: predictive machine learning model for air quality forecasting using web interface. Environmental Systems Research, 13:1–19.
15 Zou, Y., Tian, H., Huang, Z., Liu, L., Xuan, Y., Dai, J., and Nie, L. (2025). Study on prediction models of oxygenated components content in biomass pyrolysis oil based on neural networks and random forests. Biomass and Bioenergy, 193:107601.