1 |
Alves, M. L. A. (2023). Repoair: Desenvolvimento do repositório de dados para monitoramento da qualidade do ar. Trabalho de conclusão de curso (graduação em engenharia civil), Universidade Federal do Ceará, Fortaleza. Orientador: Prof. Dr. Bruno Vieira Bertoncini.
|
|
2 |
Asgari, M., Yang, W., and Farnaghi, M. (2022). Spatiotemporal data partitioning for distributed random forest algorithm: Air quality prediction using imbalanced big spatio-
temporal data on spark distributed framework. Environmental Technology Innovation,
27:102776.
|
|
3 |
Biancofiore, F., Busilacchio, M., Verdecchia, M., Tomassetti, B., Aruffo, E., Bianco, S., Tommaso, S. D., Colangeli, C., Rosatelli, G., and Carlo, P. D. (2017). Recursive neural
network model for analysis and forecast of pm10 and pm2.5. Atmospheric Pollution
Research, 8:652–659.
|
|
4 |
Cengil, E. (2025). The power of machine learning methods and pso in air quality prediction. Applied Sciences, 15:2546.
|
|
5 |
Chojer, H., Branco, P., Martins, F., Alvim-Ferraz, M., and Sousa, S. (2020). Development
of low-cost indoor air quality monitoring devices: Recent advancements. Science of
The Total Environment, 727:138385.
|
|
6 |
DESA, U. (2023). The sustainable development goals report 2023: Special edition -
july 2023. Technical report, Disponível em: https://unstats.un.org/sdgs/repor t/2023/.
Acesso em: 11 marc¸ 2025.
|
|
7 |
Deveer, L. and Minet, L. (2025). Real-time air quality prediction using traffic videos and
machine learning. Transportation Research Part D, 142:104688.
|
|
8 |
Galli, L., Galvan, G., Sciandrone, M., Cantù, M., and Tomaselli, G. (2018). Machine
learning methods for short-term bid forecasting in the renewable energy market: A
case study in italy. Windy Energy, 21.
|
|
9 |
Goudarzi, G., Shirmardi, M., Naimabadi, A., Ghadiri, A., and Sajedifar, J. (2019). Chemical and organic characteristics of pm2.5 particles and their in-vitro cytotoxic effects
on lung cells: The middle east dust storms in ahvaz, iran. Science of The Total Environment, 655:434–445.
|
|
10 |
Jairi, I., Ben-Othman, S., Canivet, L., and Zgaya-Biau, H. (2024). Enhancing air pollution prediction: A neural transfer learning approach across different air pollutants.
Environmental Technology Innovation, 36.
|
|
11 |
Kawichai, S., Sripan, P., Rerkasem, A., Rerkasem, K., and Srisukkham, W. (2025). Longterm retrospective predicted concentration of pm2.5 in upper northern thailand using
machine learning models. Toxics, 13:170.
|
|
12 |
Lakra, A. R., Gautam, S., Samuel, C., and Blaga, R. (2025). College bus commuter exposures to air pollutants in indian city: The urban-rural transportation exposure study.
Geosystems and Geoenvironment, 4:100346.
|
|
13 |
Li, Y. and Sun, Y. (2021). Modeling and predicting city-level co2 emissions using open
access data and machine learning. Environmental Science and Pollution Research,
28:19260–19271.
|
|
14 |
Rahman, M., Nayeem, E. H., Ahmed, S., Tanha, K. A., Sakib, S. A., Hafiz, K. M. M.
U. ., and Babu, H. (2024). Airnet: predictive machine learning model for air quality
forecasting using web interface. Environmental Systems Research, 13:1–19.
|
|
15 |
Zou, Y., Tian, H., Huang, Z., Liu, L., Xuan, Y., Dai, J., and Nie, L. (2025). Study on
prediction models of oxygenated components content in biomass pyrolysis oil based
on neural networks and random forests. Biomass and Bioenergy, 193:107601.
|
|