1 |
Akinrinola, O., Addy, W. A., Ajayi-Nifise, A. O., Odeyemi, O., and Falaiye, T. (2024). Application of machine learning in tax prediction: A review with practical approaches. Global Journal of Engineering and Technology Advances, page 102–117.
|
|
2 |
Amarasinghe, K., Rodolfa, K. T., Lamba, H., and Ghani, R. (2023). Explainable machine learning for public policy: Use cases, gaps, and research directions. Data 38; Policy, 5:e5.
|
|
3 |
Brasil (1988). Constituição da República Federativa do Brasil. Acesso em: 25 de maio de 2024.
|
|
4 |
Faceli, K. (2011). Inteligência artificial: uma abordagem de aprendizado de máquina. Grupo Gen - LTC.
|
|
5 |
Governo do Estado do Ceará (2023). Sefaz divulga tabela do IPVA 2024, que apresenta redução média de 4,59. Acesso em: 28 de maio de 2024.
|
|
6 |
Hastie, T., Tibshirani, R., Friedman, J. H., and Friedman, J. H. (2009). The elements of statistical learning: data mining, inference, and prediction, volume 2. Springer.
|
|
7 |
Lima, M. S. M. and Delen, D. (2020). Predicting and explaining corruption across countries: A machine learning approach. Government Information Quarterly, 37(1):101407.
|
|
8 |
Silva, D., Carvalho, S. T., and Silva, N. (2022). Comparative analysis of classification algorithms applied to circular trading prediction scenarios. In K˝o, A., Francesconi, E., Kotsis, G., Tjoa, A. M., and Khalil, I., editors, Electronic Government and the Information Systems Perspective, pages 95–109, Cham. Springer International Publishing.
|
|