SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Maria Inês V. Silva(ines.vale@sefaz.ce.gov.br)
2 Francisco Victor da S. Pinheiro(victor.pinheiro.ce@alu.ufc.br)
3 César Lincoln C. Mattos(cesarlincoln@dc.ufc.br)
4 José Maria da S. Monteiro Filho(monteiro@dc.ufc.br)
5 Rossana M. C. Andrade(rossana@ufc.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Akinrinola, O., Addy, W. A., Ajayi-Nifise, A. O., Odeyemi, O., and Falaiye, T. (2024). Application of machine learning in tax prediction: A review with practical approaches. Global Journal of Engineering and Technology Advances, page 102–117.
2 Amarasinghe, K., Rodolfa, K. T., Lamba, H., and Ghani, R. (2023). Explainable machine learning for public policy: Use cases, gaps, and research directions. Data 38; Policy, 5:e5.
3 Brasil (1988). Constituição da República Federativa do Brasil. Acesso em: 25 de maio de 2024.
4 Faceli, K. (2011). Inteligência artificial: uma abordagem de aprendizado de máquina. Grupo Gen - LTC.
5 Governo do Estado do Ceará (2023). Sefaz divulga tabela do IPVA 2024, que apresenta redução média de 4,59. Acesso em: 28 de maio de 2024.
6 Hastie, T., Tibshirani, R., Friedman, J. H., and Friedman, J. H. (2009). The elements of statistical learning: data mining, inference, and prediction, volume 2. Springer.
7 Lima, M. S. M. and Delen, D. (2020). Predicting and explaining corruption across countries: A machine learning approach. Government Information Quarterly, 37(1):101407.
8 Silva, D., Carvalho, S. T., and Silva, N. (2022). Comparative analysis of classification algorithms applied to circular trading prediction scenarios. In K˝o, A., Francesconi, E., Kotsis, G., Tjoa, A. M., and Khalil, I., editors, Electronic Government and the Information Systems Perspective, pages 95–109, Cham. Springer International Publishing.