1 |
Bai, Y., Yang, Z., Yu, J., Ju, R.-Y., Yang, B., Mas, E., & Koshimura, S. (2024). Flood data analysis on SpaceNet 8 using Apache Sedona. arXiv preprint arXiv:2404.18235. https://arxiv.org/abs/2404.18235
|
|
2 |
Croeser, T., Sharma, R., Weisser, W. W., & Bekessy, S. A. (2024). Acute canopy deficits in global cities exposed by the 3-30-300 benchmark for urban nature. Nature Communications, 15(1), 9333. https://doi.org/10.1038/s41467-024-49383-1
|
|
3 |
Forrest, M. (2025). Geospatial tools compared: When to use GeoPandas, PostGIS, DuckDB, Apache Sedona, and Wherobots. Medium. Retrieved June 19, 2025, from https://towardsdatascience.com/geospatial-tools-compared
|
|
4 |
García-García, F., Corral, A., Iribarne, L., & Vassilakopoulos, M. (2023). Efficient distributed algorithms for distance join queries in Spark-based spatial analytics systems. International Journal of General Systems, 52(3), 206–250. https://doi.org/10.1080/03081079.2023.2174732
|
|
5 |
Konijnendijk, C. C. (2023). Evidence-based guidelines for greener, healthier, more resilient neighbourhoods: Introducing the 3–30–300 rule. Journal of Forestry Research, 34(3), 821–830. https://doi.org/10.1007/s11676-022-01551-4
|
|
6 |
Lyon, W., Yu, J., & Sarwat, M. (2025). Cloud native geospatial analytics with Apache Sedona (1st ed.). O’Reilly Media.
|
|
7 |
Moussa, R. (2021). Scalable analytics of air quality batches with Apache Spark and Apache Sedona. In Proceedings of the 15th ACM International Conference on Distributed and Event-Based Systems (DEBS ’21) (pp. 154–159). Association for Computing Machinery. https://doi.org/10.1145/3465480.3466932
|
|
8 |
Nieuwenhuijsen, M. J., Dadvand, P., Márquez, S., Bartoll, X., Barboza, E. P., Cirach, M., Borrell, C., & Zijlema, W. L. (2022). The evaluation of the 3-30-300 green space rule and mental health. Environmental Research, 215, 114387. https://doi.org/10.1016/j.envres.2022.114387
|
|
9 |
Wyrzykowski, B., & Mościcka, A. (2024). Implementation of the 3-30-300 green city concept: Warsaw case study. Applied Sciences, 14(22), 10566. https://doi.org/10.3390/app142210566
|
|
10 |
Yu, J., Wu, J., & Sarwat, M. (2015). GeoSpark: A cluster computing framework for processing large-scale spatial data. In Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems (pp. 1–4). Association for Computing Machinery. https://doi.org/10.1145/2820783.2820860
|
|
11 |
Zheng, Y., Lin, T., Hamm, N. A., Liu, J., Zhou, T., Geng, H., Zhang, J., Ye, H., Zhang, G., Wang, X., et al. (2024). Quantitative evaluation of urban green exposure and its impact on human health: A case study on the 3–30-300 green space rule. Science of the Total Environment, 924, 171461. https://doi.org/10.1016/j.scitotenv.2024.171461
|
|