1 |
Ahad, M. A. (2019). Analysis of Simulated Electromyography (EMG) Signals Using Integrated Computer Muscle Model. PhD thesis, University of Tennessee.
|
|
2 |
B´o, A. P. L. (2010). Compensation active de tremblements pathologiques des membres supérieurs via la stimulation électrique fonctionnelle. PhD thesis, Montpellier II.
|
|
3 |
Delaney, A. M., Brophy, E., and Ward, T. E. (2019). Synthesis of realistic ecg using generative adversarial networks. ArXiv, abs/1909.09150
|
|
4 |
Gatys, L. A., Ecker, A. S., and Bethge, M. (2015). A neural algorithm of artistic style. ArXiv, abs/1508.06576.
|
|
5 |
Guerrero, A. and Mac´ıas-D´ıaz, J. E. (2019). A package for the computational analysis of complex biophysical signals. International Journal of Modern Physics C, 30(01)
|
|
6 |
Johnson, J., Alahi, A., and Fei-Fei, L. (2016). Perceptual losses for real-time style transfer and super-resolution. In ECCV.
|
|
7 |
Organization., W. H. (2006). Neurological disorders: public health challenges.
|
|
8 |
Petersen, E. and Rostalski, P. (2019). A comprehensive mathematical model of motor unit pool organization, surface electromyography, and force generation. Frontiers in Physiology, 10:176.
|
|
9 |
Philipson, B. J. (2009). System and methods for emg-triggered neuromuscular electrical stimulation. US 2009/0171417A1.
|
|
10 |
Semmlow, J. L. and Griffel, B. (2014). Biosignal and Medical Image Processing. CRC.
|
|
11 |
Zanini, R. A. and Colombini, E. L. (2020). Parkinson’s disease emg data augmentation and simulation with dcgans and style transfer. Sensors, 20(9).
|
|
12 |
Zanini, R. A., Colombini, E. L., and de Castro, M. C. F. (2019). Parkinson’s disease emg signal prediction using neural networks. In 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), pages 2446–2453.
|
|