1 |
de Oliveira, D. C. M., Liu, J., and Pacitti, E. (2019). Data-Intensive Workflow Management: For Clouds and Data-Intensive and Scalable Computing Environments. Synthesis Lectures on Data Management. Morgan & Claypool Publishers
|
|
2 |
de Oliveira, D. E. M. et al. (2021). Towards optimizing the execution of spark scientific workflows using machine learning-based parameter tuning. Concurr. Comput. Pract. Exp., 33(5)
|
|
3 |
Essertel, G. et al. (2018). Flare: Optimizing Apache Spark with native compilation for scale-up architectures and medium-size data. In 13th USENIX OSDI, pages 799–815
|
|
4 |
Huang, X., Zhang, H., and Zhai, X. (2022). A novel reinforcement learning approach for spark configuration parameter optimization. Sensors (Basel), 22(15):5930
|
|
5 |
Haase, C., Röseler, T., and Seidel, M. (2022). METL: a modern ETL pipeline with a dynamic mapping matrix. CoRR, abs/2203.10289
|
|
6 |
Jin, W., Wang, H., Zha, D., Tan, Q., Ma, Y., Li, S., and Lee, S.-I. (2024). Dcai: Data-centric artificial intelligence. WWW ’24, page 1482–1485, New York, NY, USA
|
|
7 |
Lama, P. and Zhou, X. (2012). Aroma: Automated resource allocation and configuration of mapreduce environment in the cloud. In ICAC ’12, pages 63–72, New York, NY, USA
|
|
8 |
LeFevre, J., Liu, R., et al. (2016). Building the enterprise fabric for big data with vertica and spark integration. In SIGMOD, SIGMOD ’16, page 63–75, New York, NY, USA
|
|
9 |
López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., and Stützle, T. (2016). The irace package: Iterated racing for automatic algorithm configuration. Operations Research Perspectives, 3:43–58
|
|
10 |
Maron, O. and Moore, A. W. (1997). The racing algorithm: Model selection for lazy learners. Artificial Intelligence Review, 11(1):193–225
|
|
11 |
Mozaffari, M., Dignös, A., Gamper, J., and Störl, U. (2024). Self-tuning database systems: A systematic literature review of automatic database schema design and tuning. ACM Comput. Surv. Just Accepted
|
|
12 |
Ocaña, K. A. C. S., de Oliveira, D., Ogasawara, E. S., Dávila, A. M. R., Lima, A. A. B., and Mattoso, M. (2011). Sciphy: A cloud-based workflow for phylogenetic analysis of drug targets in protozoan genomes. In 6th BSB 2011, Brasilia, Brazil, pages 66–70
|
|
13 |
Ocaña, K. A. C. S. et al. (2015). Data analytics in bioinformatics: Data science in practice for genomics analysis workflows. In IEEE e-Science 2015, pages 322–331
|
|
14 |
Oliveira, R., Baião, F., Machado, J., Almeida, A. C., and Lifschitz, S. (2022). Autonomic combination and selection of tuning actions. In SBBD 2022, pages 39–51. SBC
|
|
15 |
Pina, D. B., Chapman, A., Kunstmann, L. N. O., de Oliveira, D., and Mattoso, M. (2024). Dlprov: A data-centric support for deep learning workflow analyses. In Proc. of the 8th DEEM-SIGMOD 2024, Santiago, Chile, pages 77–85. ACM
|
|
16 |
Popescu, A., Balmin, A., Ercegovac, V., and Ailamaki, A. (2013). Predict: Towards predicting the runtime of large scale iterative analytics. PVLDB, 6(14):1678–1689
|
|
17 |
Sharma, A., Schuhknecht, F. M., and Dittrich, J. (2018). The case for automatic database administration using deep reinforcement learning. ArXiv e-prints
|
|
18 |
Silva-Muñoz, M., Franzin, A., and Bersini, H. (2021). Automatic configuration of the cassandra database using irace. PeerJ Comput. Sci., 7:e634
|
|
19 |
Teylo, L., de Paula Junior, U., Frota, Y., de Oliveira, D., and Drummond, L. M. A. (2017). A hybrid evolutionary algorithm for task scheduling and data assignment of data-intensive scientific workflows on clouds. Future Gener. Comput. Syst., 76:1–17
|
|
20 |
Yu, Z., Bei, Z., and Qian, X. (2018). Datasize-aware high dimensional configurations auto-tuning of in-memory cluster computing. In ASPLOS’18, pages 564–577.
|
|
21 |
Zaharia, M. (2019). Lessons from large-scale software as a service at databricks. SoCC’19, page 101, New York, NY, USA
|
|
22 |
Zhang, J. et al. (2021). Cdbtune+: An efficient deep reinforcement learning-based automatic cloud database tuning system. VLDB J., 30(6):959–987
|
|
23 |
Zhu, Y., Liu, J., Guo, M., Bao, Y., Ma, W., Liu, Z., Song, K., and Yang, Y. (2017). Best-config: tapping the performance potential of systems via automatic configuration tuning. SoCC ’17, page 338–350, New York, NY, USA
|
|