1 |
Ahad, M. A., Paiva, S., Tripathi, G., and Feroz, N. (2020). Enabling technologies and sustainable smart cities. Sustainable cities and society, 61:102301.
|
|
2 |
Alablani, I. and Alenazi, M. (2020). EDTD-SC: An IoT sensor deployment strategy for smart cities. sensors, 20(24):7191.
|
|
3 |
Chang, X. and Cui, H. (2021). Distributed storage strategy and visual analysis for economic big data. Journal of Mathematics, 2021:3224190.
|
|
4 |
Chen, M., Mao, S., and Liu, Y. (2014). Big data: A survey. Mobile networks and applications, 19(2):171–209.
|
|
5 |
Clarindo, J. P., Castro, J. P. d. C., and Aguiar, C. D. d. (2021). Combining fog and cloud computing to support spatial analytics in smart cities. Journal of Information and Data Management-JIDM, 12(4):342–360.
|
|
6 |
de Carvalho Castro, J. P., Chaves Carniel, A., and Dutra de Aguiar Ciferri, C. (2020). Analyzing spatial analytics systems based on hadoop and spark: A user perspective. Software: Practice and Experience, 50(12):2121–2144.
|
|
7 |
Hai, R., Quix, C., and Jarke, M. (2021). Data lake concept and systems: a survey. CoRR, abs/2106.09592.
|
|
8 |
Liu, S., Peng, L., Chi, T., and Wang, X. (2016). Research on multi-source heterogeneous data collection for the smart city public information platform. In 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pages 623–626. IEEE.
|
|
9 |
Massobrio, R., Nesmachnow, S., Tchernykh, A., Avetisyan, A., and Radchenko, G. (2018). Towards a cloud computing paradigm for big data analysis in smart cities. Programming and Computer Software, 44(3):181–189.
|
|
10 |
Mătăcuţă, A. and Popa, C. (2018). Big data analytics: Analysis of features and performance of big data ingestion tools. Informatica Economica, 22(2).
|
|
11 |
Meehan, J., Aslantas, C., Zdonik, S., Tatbul, N., and Du, J. (2017). Data ingestion for the connected world. In CIDR, volume 17, pages 8–11.
|
|
12 |
Panwar, A. and Bhatnagar, V. (2020). Scrutinize the idea of hadoop-based data lake for big data storage. Applications of Machine Learning, pages 365–391.
|
|
13 |
Pereira, D. A., Ourique de Morais, W., and Pignaton de Freitas, E. (2018). Nosql real-time database performance comparison. International Journal of Parallel, Emergent and Distributed Systems, 33(2):144–156.
|
|
14 |
Rathore, M. M., Paul, A., Hong, W.-H., Seo, H., Awan, I., and Saeed, S. (2018). Exploiting iot and big data analytics: Defining smart digital city using real-time urban data. Sustainable cities and society, 40:600–610.
|
|
15 |
Reinsel, D., Gantz, J., and Rydning, J. (2017). Data age 2025: The evolution of data to life-critical. Don’t Focus on Big Data, 2.
|
|
16 |
Veiga, J., Expósito, R. R., Pardo, X. C., Taboada, G. L., and Tourifio, J. (2016). Performance evaluation of big data frameworks for large-scale data analytics. In 2016 IEEE International Conference on Big Data (Big Data), pages 424–431. IEEE.
|
|