1 |
Ahmed, T., Devanbu, P., Treude, C., and Pradel, M. Can LLMs replace manual annotation of software engineering artifacts?, 2024.
|
|
2 |
Anbaee Farimani, S., Vafaei Jahan, M., Milani Fard, A., and Tabbakh, S. R. K. Investigating the informativeness of technical indicators and news sentiment in financial market price prediction. Knowledge-Based Systems vol. 247, pp. 108742, 2022.
|
|
3 |
Ardekani, A. M., Bertz, J., Bryce, C., Dowling, M., and Long, S. C. Finsentgpt: A universal financial sentiment engine? International Review of Financial Analysis vol. 94, pp. 103291, 2024.
|
|
4 |
Bashar Yaser Almansour, S. E. and Almansour, A. Y. Behavioral finance factors and investment decisions: A mediating role of risk perception. Cogent Economics & Finance 11 (2): 2239032, 2023.
|
|
5 |
Chen, C.-C., Tseng, Y.-M., Kang, J., Lhuissier, A., Seki, Y., Day, M.-Y., Tu, T.-T., and Chen, H.-H. Multi-lingual ESG impact type identification. In Proceedings of the Sixth Workshop on Financial Technology and Natural Language Processing, C.-C. Chen, H.-H. Huang, H. Takamura, H.-H. Chen, H. Sakaji, and K. Izumi (Eds.). Association for Computational Linguistics, Bali, Indonesia, pp. 46–50, 2023
|
|
6 |
Day, M.-Y. and Lee, C.-C. Deep learning for financial sentiment analysis on finance news providers. In 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). pp. 1127–
1134, 2016.
|
|
7 |
Dickason, Z. and Ferreira, S. Establishing a link between risk tolerance, investor personality and behavioural finance in south africa. Cogent Economics & Finance 6 (1): 1519898, 2018.
|
|
8 |
Dong, X., Wang, S., Lin, D., Rajbahadur, G. K., Zhou, B., Liu, S., and Hassan, A. E. Promptexp: Multi-granularity prompt explanation of large language models, 2024.
|
|
9 |
Gemini-Team. Gemini: A family of highly capable multimodal models, 2024.
|
|
10 |
Gemma Team. Gemma 3: Open models from google deepmind. https://huggingface.co/google/gemma-3-27b-it, 2025. Modelo open-weight de 27 bilhões de parâmetros com capacidades multimodais.
|
|
11 |
Google DeepMind Team. Gemini 2.5 flash model card. https://cloud.google.com/vertex-ai/docs/generative-ai/model-reference/gemini, 2025. Modelo Gemini 2.5 Flash com foco em alta performance e baixa
latência.
|
|
12 |
Heston, S. and Sinha, N. News vs. sentiment: Predicting stock returns from news stories. Financial Analysts Journal vol. 73, pp. 1–17, 06, 2017.
|
|
13 |
Hiew, J. Z. G., Huang, X., Mou, H., Li, D., Wu, Q., and Xu, Y. Bert-based financial sentiment index and lstm-based stock return predictability, 2022.
|
|
14 |
Khadjeh Nassirtoussi, A., Aghabozorgi, S., Ying Wah, T., and Ngo, D. C. L. Text mining for market prediction: A systematic review. Expert Systems with Applications 41 (16): 7653–7670, 2014.
|
|
15 |
Krippendorff, K. Computing krippendorff’s alpha-reliability, 2011.
|
|
16 |
Loughran, T. When is a liability not a liability? textual analysis, dictionaries, and 10-ks. The Journal of Finance vol. 66, pp. 35 – 65, 02, 2011.
|
|
17 |
Mak, M. and Ip, W. An exploratory study of investment behaviour of investors. International Journal of Engineering Business Management vol. 9, pp. 184797901771152, 06, 2017.
|
|
18 |
Man, X., Luo, T., and Lin, J. Financial sentiment analysis(fsa): A survey. 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS), 2019.
|
|
19 |
Nguyen, L., Gallery, G., and Newton, C. The joint influence of financial risk perception and risk tolerance on individual investment decision-making. Accounting & Finance vol. 59, 09, 2017.
|
|
20 |
OpenAI-Team. Gpt-4 technical report, 2024.
|
|
21 |
Pangakis, N. and Wolken, S. Knowledge distillation in automated annotation: Supervised text classification with LLM-generated training labels, 2024.
|
|
22 |
Pompian, M. Risk profiling through a behavioral finance lens. CFA Institute Research Foundation, 2016.
|
|
23 |
Saad, S. and Saberi, B. Sentiment analysis or opinion mining: A review. International Journal on Advanced Science, Engineering and Information Technology vol. 7, pp. 1660, 10, 2017.
|
|
24 |
Tan, Z., Li, D., Wang, S., Beigi, A., Jiang, B., Bhattacharjee, A., Karami, M., Li, J., Cheng, L., and Liu, H. Large language models for data annotation and synthesis: A survey, 2024.
|
|
25 |
United-Nations. Transforming our world: The 2030 agenda for sustainable development, 2015. Accessed: 2025-02-02.
|
|
26 |
UNPRI. Principles for responsible investment, 2006. Accessed: 2025-02-02.
|
|
27 |
Wang, Y., Stevens, D., Shah, P., Jiang, W., Liu, M., Chen, X., Kuo, R., Li, N., Gong, B., Lee, D., Hu, J., Zhang, N., and Kamma, B. Model-in-the-loop (milo): Accelerating multimodal AI data annotation with LLMs, 2024.
|
|
28 |
White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert, H., Elnashar, A., Spencer-Smith, J., and Schmidt, D. C. A prompt pattern catalog to enhance prompt engineering with ChatGPT. arXiv preprint arXiv:2302.11382 , 2023.
|
|
29 |
Wu, J., Wang, X., and Jia, W. Enhancing text annotation through rationale-driven collaborative few-shot prompting, 2024.
|
|
30 |
Yadav, S., Choppa, T., and Schlechtweg, D. Towards automating text annotation: A case study on semantic proximity annotation using GPT-4, 2024.
|
|
31 |
Yang, A., Liu, W., Zhu, B., et al. Qwen3 technical report. https://github.com/QwenLM/Qwen, 2025. Descrição técnica do modelo Qwen-3-32B, um grande modelo de linguagem com 32 bilhões de parâmetros.
|
|
32 |
Yang, S., Rosenfeld, J., and Makutonin, J. Financial aspect-based sentiment analysis using deep representations. CoRR vol. abs/1808.07931, 2018.
|
|
33 |
Zhang, R., Li, Y., Ma, Y., Zhou, M., and Zou, L. LLMaAA: Making large language models as active annotators. In Findings of the Association for Computational Linguistics: EMNLP 2023, H. Bouamor, J. Pino, and K. Bali (Eds.). Association for Computational Linguistics, Singapore, pp. 13088–13103, 2023.
|
|