1 |
Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., and Sears, R. (2010). Benchmarking cloud serving systems with ycsb. In Proceedings of the 1st ACM symposium on Cloud computing, pages 143–154. ACM.
|
|
2 |
Didona, D. and Romano, P. (2014). On bootstrapping machine learning performance predictors via analytical models. arXiv preprint arXiv:1410.5102.
|
|
3 |
Duggan, J., Cetintemel, U., Papaemmanouil, O., and Upfal, E. (2011). Performance prediction for concurrent database workloads. In ACM SIGMOD, pages 337–348. ACM.
|
|
4 |
Elmore, A. J., Das, S., Agrawal, D., and El Abbadi, A. (2011). Zephyr: live migration in shared nothing databases for elastic cloud platforms. In SIGMOD ’11, pages 301–312.
|
|
5 |
Farias, V. A. E., Sousa, F. R. C., Maia, J. G. R., Gomes, J. a. P. P., and Machado, J. C. (2016a). Elastic provisioning for cloud databases with uncertainty management. In ACM SAC, pages 390–397.
|
|
6 |
Farias, V. A. E., Sousa, F. R. C., Maia, J. G. R., Gomes, J. P. P., and Machado, J. C. (2016b). Machine learning approach for cloud nosql databases performance modeling. In CCGrid, pages 617–620.
|
|
7 |
Ganapathi, A., Kuno, H., Dayal, U., Wiener, J. L., Fox, A., Jordan, M., and Patterson, D. (2009). Predicting multiple metrics for queries: Better decisions enabled by machine learning. In ICDE, pages 592–603. IEEE.
|
|
8 |
Gray, J., Helland, P., O’Neil, P., and Shasha, D. (1996). The dangers of replication and a solution. In ACM SIGMOD Record, volume 25, pages 173–182. ACM.
|
|
9 |
Huang, G.-B., Zhu, Q.-Y., and Siew, C.-K. (2004). Extreme learning machine: a new learning scheme of feedforward neural networks. In Neural Networks, 2004. Proceedings. 2004 IEEE International Joint Conference on, volume 2, pages 985–990. IEEE.
|
|
10 |
Inc, M. (2015). MongoDB. http://www.mongodb.com.
|
|
11 |
Liang, N.-Y., Huang, G.-B., Saratchandran, P., and Sundararajan, N. (2006). A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Transactions on neural networks, 17(6):1411–1423.
|
|
12 |
Mozafari, B., Curino, C., Jindal, A., and Madden, S. (2013). Performance and resource modeling in highly-concurrent oltp workloads. In ACM SIGMOD, pages 301–312. ACM.
|
|
13 |
Schmidt, W. F., Kraaijveld, M. A., and Duin, R. P. (1992). Feedforward neural networks with random weights. In Pattern Recognition, 1992. Vol. II. Conference B: Pattern Recognition Methodology and Systems, Proceedings., 11th IAPR International Conference on, pages 1–4. IEEE.
|
|
14 |
Sheikh, M. B., Minhas, U. F., Khan, O. Z., Aboulnaga, A., Poupart, P., and Taylor, D. J. (2011). A bayesian approach to online performance modeling for database appliances using gaussian models. In Proceedings of the 8th ACM international conference on computing, pages 121–130. ACM.
|
|
15 |
Walt, S. v. d., Colbert, S. C., and Varoquaux, G. (2011). The numpy array: a structure for efficient numerical computation. Computing in Science & Engineering, 13(2):22–30.
|
|