SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Felipe Viegas(frviegas@dcc.ufmg.br)
2 Leonardo Rocha(lcrocha@ufsj.edu.br)
3 Marcos Gonçalves(mgoncalv@dcc.ufmg.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
2 Griffiths, T. L., Jordan, M. I., Tenenbaum, J. B., and Blei, D. M. (2004). Hierarchical topic models and the nested chinese restaurant process. In Advances in neural information processing systems, pages 17–24.
3 Grootendorst, M. (2022). Bertopic: Neural topic modeling with a class-based tf-idf procedure. arXiv preprint arXiv:2203.05794.
4 Hamilton, W. L., Clark, K., Leskovec, J., and Jurafsky, D. (2016). Inducing domainspecific sentiment lexicons from unlabeled corpora. CoRR, abs/1606.02820.
5 Hutto, C. J. and Gilbert, E. (2014). Vader: A parsimonious rule-based model for sentiment analysis of social media text. In Eighth international AAAI conference on weblogs and social media.
6 Li, C., Duan, Y., Wang, H., Zhang, Z., Sun, A., and Ma, Z. (2017). Enhancing topic modeling for short texts with auxiliary word embeddings. ACM TOIS.
7 Sachan, D. S., Zaheer, M., and Salakhutdinov, R. (2019). Revisiting lstm networks for semi-supervised text classification via mixed objective function. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):6940–6948.
8 Shi, T., Kang, K., Choo, J., and Reddy, C. K. (2018). Short-text topic modeling via nonnegative matrix factorization enriched with local word-context correlations. In WWW ’18, pages 1105–1114.
9 Yang, J., Jin, H., Tang, R., Han, X., Feng, Q., Jiang, H., Zhong, S., Yin, B., and Hu, X. (2024). Harnessing the power of llms in practice: A survey on chatgpt and beyond. ACM Trans. Knowl. Discov. Data, 18(6).