1 |
Berton, L., de Andrade Lopes, A., and Vega-Oliveros, D. A. A comparison of graph construction methods for semi-supervised learning. In 2018 International Joint Conference on Neural Networks, IJCNN 2018, Rio de Janeiro, Brazil, July 8-13, 2018. IEEE, pp. 1–8, 2018.
|
|
2 |
Campello, R. J. G. B., Moulavi, D., Zimek, A., and Sander, J. Hierarchical density estimates for data clustering, visualization, and outlier detection. ACM TKDD 10 (1): 1–51, 2015.
|
|
3 |
Chapelle, O., Scholkopf, B., and Zien, A. Semi-Supervised Learning. MIT Press, Cambridge, MA, 2006.
|
|
4 |
de Sousa, C. A. R., Rezende, S. O., and Batista, G. E. A. P. A. Influence of graph construction on semi-supervised learning. In Machine Learning and Knowledge Discovery in Databases - European Conference, ECML
PKDD 2013, Prague, Czech Republic, September 23-27, 2013, Proceedings, Part III, H. Blockeel, K. Kersting, S. Nijssen, and F. Zelezný (Eds.). Lecture Notes in Computer Science, vol. 8190. Springer, pp. 160–175, 2013.
|
|
5 |
de Souto, M. C. P., Costa, I. G., de Araujo, D. S. A., Ludermir, T. B., and Schliep, A. Clustering cancer gene expression data: a comparative study. BMC Bioinformatics vol. 9, pp. 1–14, 2008.
|
|
6 |
Demšar, J. Statistical comparisons of classifiers over multiple data sets. JMLR vol. 7, pp. 1–30, 2006.
|
|
7 |
Fontaine, F., Pastor, M., Zamora, I., and Sanz, F. Anchor-grind: Filling the gap between standard 3d qsar and the grid-independent descriptors. Journal of Medicinal Chemistry 48 (7): 2687-2694, 2005. PMID: 15801859.
|
|
8 |
Friedman, M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Amer. Statist. Assoc. 32 (200): 675–701, 1937.
|
|
9 |
Gaulton, A., Hersey, A., Nowotka, M., Bento, A. P., Chambers, J., Mendez, D., Mutowo-Meullenet, P.,Atkinson, F., Bellis, L. J., Cibrián-Uhalte, E., Davies, M., Dedman, N., Karlsson, A., Magariños, M. P., Overington, J. P., Papadatos, G., Smit, I., and Leach, A. R. The ChEMBL database in 2017. Nucleic Acids Res. 45 (Database-Issue): D945–D954, 2017.
|
|
10 |
Gertrudes, J. C., Zimek, A., Sander, J., and Campello, R. J. G. B. A unified framework of density-based clustering for semi-supervised classification. In Proceedings of the 30th International Conference on Scientific and Statistical Database Management, SSDBM 2018, Bozen-Bolzano, Italy, July 09-11, 2018, D.Sacharidis, J. Gamper, and M. H. Böhlen (Eds.). ACM, pp. 11:1–11:12, 2018.
|
|
11 |
Lichman, M. UCI machine learning repository, 2013.
|
|
12 |
Liu, W. and Chang, S. Robust multi-class transductive learning with graphs. In Proc. IEEE CVPR. pp. 381–388, 2009.
|
|
13 |
Menczer, F., Fortunato, S., and Davis, C. A. A first course in network science. Cambridge University Press, 2020.
|
|
14 |
Moulavi, D., Jaskowiak, P. A., Campello, R. J. G. B., Zimek, A., and Sander, J. Density-based clustering validation. In Proceedings of the 2014 SIAM International Conference on Data Mining, Philadelphia, Pennsylvania, USA, April 24-26, 2014, M. J. Zaki, Z. Obradovic, P. Tan, A. Banerjee, C. Kamath, and S. Parthasarathy (Eds.).
SIAM, pp. 839–847, 2014.
|
|
15 |
Naldi, M. C., Campello, R. J. G. B., Hruschka, E. R., and Carvalho, A. C. P. L. F. Efficiency issues of evolutionary k-means. Appl.iedSoft Computing 11 (2): 1938–1952, 2011.
|
|
16 |
Nemenyi, P. B. Distribution-free multiple comparisons. Ph.D. thesis, Princeton University, 1963.
|
|
17 |
Ozaki, K., Shimbo, M., Komachi, M., and Matsumoto, Y. Using the mutual k-nearest neighbor graphs for semi-supervised classification on natural language data. In Proceedings of the Fifteenth Conference on Computational Natural Language Learning, CoNLL 2011, Portland, Oregon, USA, June 23-24, 2011, S. Goldwater and C. D. Manning (Eds.). ACL, pp. 154–162, 2011.
|
|
18 |
Serrano, M. Á., Boguñá, M., and Vespignani, A. Extracting the multiscale backbone of complex weighted networks. Proceedings of the national academy of sciences 106 (16): 6483–6488, 2009.
|
|
19 |
Sokolova, M. and Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf Process Manag 45 (4): 427–437, 2009.
|
|
20 |
Sutherland, J. J., O’Brien, L. A., and Weaver, D. F. A comparison of methods for modeling quantitative structure-activity relationships. J. Med.Chem. 47 (22): 5541–5554, 2004.
|
|
21 |
Vanschoren, J., Van Rijn, J. N., Bischl, B., and Torgo, L. Openml: networked science in machine learning. ACM SIGKDD Expl. Newsletter 15 (2): 49–60, 2014.
|
|
22 |
Vega-Oliveros, D. A., Berton, L., Eberle, A. M., de Andrade Lopes, A., and Zhao, L. Regular graph construction for semi-supervised learning. In Journal of physics: Conference series. Vol. 490. IOP Publishing, pp. 012022, 2014.
|
|
23 |
Yeung, K. Y., Medvedovic, M., and Bumgarner, R. E. Clustering gene-expression data with repeated measurements. Genome Biol 4 (5): R34, 2003.
|
|
24 |
Zhou, D., Bousquet, O., Lal, T. N., Weston, J., and Schölkopf, B. Learning with local and global consistency. In Advances in Neural Information Processing Systems 16 [Neural Information Processing Systems, NIPS 2003,December 8-13, 2003, Vancouver and Whistler, British Columbia, Canada, S. Thrun, L. K. Saul, and B. Schölkopf (Eds.). MIT Press, pp. 321–328, 2003.
|
|
25 |
Zhu, X. Semi-supervised learning literature survey — tr1530. Tech. rep., University of Wisconsin, Madison, 2005.
|
|