SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Vanessa Machado(vanessalagomachado@gmail.com)
2 Ronaldo Mello(r.mello@ufsc.br)
3 Vânia Bogorny(vania.bogorny@ufsc.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Agarwal, P. et al. (2018). Subtrajectory clustering: models and algorithms. In SIGMOD- SIGACT-SIGAI Symposium on Principles of Database Systems, pages 75–87
2 Buchin, K. et al. (2013). Median trajectories. Algorithmica, 66(3):595–614
3 Buchin, M., Kilgus, B., and K ̈olzsch, A. (2019). Group diagrams for representing trajectories. International Journal of Geographical Information Science, 34(12):2401–2433
4 Erwig, M. et al. (1999). Spatio-temporal data types: an approach to modeling and querying moving objects in databases. GeoInformatica, 3(3):269–296
5 Fiore, M. et al. (2020). Privacy in trajectory micro-data publishing: a survey. Transactions on Data Privacy, 13:91–149
6 Gao, C. et al. (2019). Semantic trajectory compression via multi-resolution synchronization-based clustering. Knowledge-Based Systems, 174:177–193
7 Lee, J.-G., Han, J., and Whang, K.-Y. (2007). Trajectory clustering: A partition-and-group framework. In SIGMOD International Conference on Management of Data, page 593–604. ACM.
8 Li, H. (2021). Typical trajectory extraction method for ships based on ais data and trajectory clustering. In 2021 2nd International Conference on Artificial Intelligence and Information Systems, pages 1–8
9 Machado, V. L., Mello, R. d. S., and Bogorny, V. (2022). A method for summarizing trajectories with multiple aspects. In International Conference on Database and Expert Systems Applications, pages 433–446. Springer.
10 Mello, R. et al. (2019). Master: A multiple aspect view on trajectories. Transactions in GIS, pages 805–822
11 Panagiotakis, C. et al. (2012). Segmentation and sampling of moving object trajectories based on representativeness. IEEE Trans. on Know. and Data Eng., 24(7):1328–1343
12 Parent, C. et al. (2013). Semantic trajectories modeling and analysis. ACM Comput. Surv., 45(4):42:1–42:32
13 Petry, L. M. et al. (2019). Towards semantic-aware multiple-aspect trajectory similarity measuring. Transactions in GIS, 23(5):960–975
14 Rodriguez, D. F. and Ortiz, A. E. (2020). Detecting representative trajectories in moving objects databases from clusters. In International Conference on Information Technology & Systems, pages 141–151. Springer
15 Seep, J. and Vahrenhold, J. (2019). Inferring semantically enriched representative trajectories. In SIGSPATIAL International Workshop on Computing with Multifaceted Movement Data, pages 1–4. ACM
16 Wang, S., Bao, Z., Culpepper, J. S., and Cong, G. (2021). A survey on trajectory data management, analytics, and learning. ACM Comput. Surv., 54(2)
17 Xie, P. et al. (2020). Urban flow prediction from spatiotemporal data using machine learning: a survey. Information Fusion, 59:1–12.
18 Almeida, D. R. et al. (2020). A Survey on Big Data for Trajectory Analytics. ISPRS Int. J. Geo-Information, 9(2):88