1 |
Agarwal, P. et al. (2018). Subtrajectory clustering: models and algorithms. In SIGMOD- SIGACT-SIGAI Symposium on Principles of Database Systems, pages 75–87
|
|
2 |
Buchin, K. et al. (2013). Median trajectories. Algorithmica, 66(3):595–614
|
|
3 |
Buchin, M., Kilgus, B., and K ̈olzsch, A. (2019). Group diagrams for representing trajectories. International Journal of Geographical Information Science, 34(12):2401–2433
|
|
4 |
Erwig, M. et al. (1999). Spatio-temporal data types: an approach to modeling and querying moving objects in databases. GeoInformatica, 3(3):269–296
|
|
5 |
Fiore, M. et al. (2020). Privacy in trajectory micro-data publishing: a survey. Transactions on Data Privacy, 13:91–149
|
|
6 |
Gao, C. et al. (2019). Semantic trajectory compression via multi-resolution synchronization-based clustering. Knowledge-Based Systems, 174:177–193
|
|
7 |
Lee, J.-G., Han, J., and Whang, K.-Y. (2007). Trajectory clustering: A partition-and-group framework. In SIGMOD International Conference on Management of Data, page 593–604. ACM.
|
|
8 |
Li, H. (2021). Typical trajectory extraction method for ships based on ais data and trajectory clustering. In 2021 2nd International Conference on Artificial Intelligence and Information Systems, pages 1–8
|
|
9 |
Machado, V. L., Mello, R. d. S., and Bogorny, V. (2022). A method for summarizing trajectories with multiple aspects. In International Conference on Database and Expert Systems Applications, pages 433–446. Springer.
|
|
10 |
Mello, R. et al. (2019). Master: A multiple aspect view on trajectories. Transactions in GIS, pages 805–822
|
|
11 |
Panagiotakis, C. et al. (2012). Segmentation and sampling of moving object trajectories based on representativeness. IEEE Trans. on Know. and Data Eng., 24(7):1328–1343
|
|
12 |
Parent, C. et al. (2013). Semantic trajectories modeling and analysis. ACM Comput. Surv., 45(4):42:1–42:32
|
|
13 |
Petry, L. M. et al. (2019). Towards semantic-aware multiple-aspect trajectory similarity measuring. Transactions in GIS, 23(5):960–975
|
|
14 |
Rodriguez, D. F. and Ortiz, A. E. (2020). Detecting representative trajectories in moving objects databases from clusters. In International Conference on Information Technology & Systems, pages 141–151. Springer
|
|
15 |
Seep, J. and Vahrenhold, J. (2019). Inferring semantically enriched representative trajectories. In SIGSPATIAL International Workshop on Computing with Multifaceted Movement Data, pages 1–4. ACM
|
|
16 |
Wang, S., Bao, Z., Culpepper, J. S., and Cong, G. (2021). A survey on trajectory data management, analytics, and learning. ACM Comput. Surv., 54(2)
|
|
17 |
Xie, P. et al. (2020). Urban flow prediction from spatiotemporal data using machine learning: a survey. Information Fusion, 59:1–12.
|
|
18 |
Almeida, D. R. et al. (2020). A Survey on Big Data for Trajectory Analytics. ISPRS Int. J. Geo-Information, 9(2):88
|
|