SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 João Vitor Felipe dos Santos(joaovitor.felipesantos@gmail.com)
2 Ricardo Nascimento(ricardomarcal02@hotmail.com)
3 Adriano César Camargo(adrianocesar321@gmail.com)
4 Sergio Canuto(sergio.canuto@ifg.edu.br)
5 Gustavo Costa(gustavo.costa@ifg.edu.br)
6 Daniel Sousa(daniel.sousa@ifg.edu.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 [Alzoghbi et al. 2015] Alzoghbi, A., Arrascue Ayala, V. A., Fischer, P. M., and Lausen, G. (2015). Pubrec: Recommending Publications Based on Publicly Available Meta-data. 2015 CEUR Workshop Proceedings, 1458:11–18.
2 [Avazpour et al. 2014] Avazpour, I., Pitakrat, T., Grunske, L., and Grundy, J. (2014). Dimensions and Metrics for Evaluating Recommendation Systems. In Robillard, M. P., Maalej, W., Walker, R. J., and Zimmermann, T., editors, Recommendation Systems in Software Engineering, pages 245–273, Berlin, Heidelberg. Springer Berlin Heidelberg.
3 [Bai et al. 2019] Bai, X., Wang, M., Lee, I., Yang, Z., Kong, X., and Xia, F. (2019). Scientific Paper Recommendation: A Survey. IEEE Access, 7:9324–9339.
4 [Beel et al. 2014] Beel, J., Langer, S., Gipp, B., and Nürnberger, A. (2014). The Architecture and Datasets of Docear’s Research Paper Recommender System. D-Lib Magazine, 20(11/12).
5 [Bulut et al. 2019] Bulut, B., Kaya, B., and Kaya, M. (2019). A Paper Recommendation System Based on User Interest and Citations. In Proceedings of the 2019 1st International Informatics and Software Engineering Conference (UBMYK), pages 1–5.
6 [Guo et al. 2020] Guo, G., Chen, B., Zhang, X., Liu, Z., Dong, Z., and He, X. (2020). Leveraging Title-Abstract Attentive Semantics for Paper Recommendation. In Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI 2020), pages 67–74. AAAI Press.
7 [Haupka et al. 2024] Haupka, N., Culbert, J. H., Schniedermann, A., Jahn, N., and Mayr, P. (2024). Analysis of the Publication and Document Types in OpenAlex, Web of Science, Scopus, Pubmed and Semantic Scholar.
8 [Kang and McAuley 2018] Kang, W.-C. and McAuley, J. (2018). Self-Attentive Sequential Recommendation. https://arxiv.org/abs/1808.09781.
9 [Koltun and Hafner 2021] Koltun, V. and Hafner, D. (2021). The h-Index Is No Longer an Effective Correlate of Scientific Reputation. PLOS ONE, 16(6):1–16.
10 [Kreutz and Schenkel 2022] Kreutz, C. K. and Schenkel, R. (2022). Scientific Paper Recommendation Systems: A Literature Review of Recent Publications. International Journal on Digital Libraries, 23:335–369.
11 [Ley 2002] Ley, M. (2002). The DBLP Computer Science Bibliography: Evolution, Research Issues, Perspectives. In Laender, A. H. F. and Oliveira, A. L., editors, String Processing and Information Retrieval, pages 1–10, Berlin, Heidelberg. Springer Berlin Heidelberg.
12 [Li et al. 2021] Li, Y., Wang, R., Nan, G., Li, D., and Li, M. (2021). A Personalized Paper Recommendation Method Considering Diverse User Preferences. Decision Support Systems, 146.
13 [Li and Zou 2019] Li, Z. and Zou, X. (2019). A Review on Personalized Academic Paper Recommendation. Computer and Information Science, 12:33.
14 [Liang et al. 2015] Liang, W., Lu, Z., Jin, Q., Xiong, Y., and Wu, M. (2015). Modeling of Research Topic Evolution Associated with Social Networks of Researchers. In Proceedings of the 2015 IEEE 12th International Conference on Ubiquitous Intelligence and Computing, 2015 IEEE 12th International Conference on Autonomic and Trusted Computing, and 2015 IEEE 15th International Conference on Scalable Computing and Communications (UIC-ATC-ScalCom), pages 1169–1174.
15 [Lima et al. 2024] Lima, M., Silva, E., and da Silva, A. (2024). Um Estudo sobre o Uso de Modelos de Linguagem Abertos na Tarefa de Recomendação de Próximo Item. In Anais do XXXIX Simpósio Brasileiro de Bancos de Dados, pages 510–522, Porto Alegre, RS, Brasil. Sociedade Brasileira de Computação.
16 [Montazerian et al. 2020] Montazerian, M., Zanotto, E. D., and Eckert, H. (2020). Prolificacy and Visibility versus Reputation in the Hard Sciences. Scientometrics, 123(1):207–221.
17 [Price et al. 2022] Price, R., Skopec, M., Mackenzie, S., Nijhoff, C., Harrison, R., Seabrook, G., and Harris, M. (2022). A Novel Data Solution to Inform Curriculum Decolonisation: The Case of the Imperial College London Masters of Public Health. Scientometrics, 127(2):1021–1037.
18 [Rashed et al. 2019] Rashed, A., Grabocka, J., and Schmidt-Thieme, L. (2019). Attribute Aware Non-Linear Co-Embeddings of Graph Features. In Proceedings of the 13th ACM Conference on Recommender Systems (RecSys ’19), pages 314–321. Association for Computing Machinery.
19 [Said and Bellogín 2014] Said, A. and Bellogín, A. (2014). Comparative Recommender System Evaluation: Benchmarking Recommendation Frameworks. In Proceedings of the 8th ACM Conference on Recommender Systems (RecSys ’14), pages 129–136, New York, NY, USA. Association for Computing Machinery.
20 [Sanchez-Lengeling et al. 2021] Sanchez-Lengeling, B., Reif, E., Pearce, A., and Wiltschko, A. B. (2021). A Gentle Introduction to Graph Neural Networks. Distill.
21 [Sugiyama and Kan 2010] Sugiyama, K. and Kan, M.-Y. (2010). Scholarly Paper Recommendation via User’s Recent Research Interests. In Proceedings of the 10th Annual Joint Conference on Digital Libraries, pages 29–38, New York, NY, USA. Association for Computing Machinery.
22 [Sun et al. 2019] Sun, F., Liu, J., Wu, J., Pei, C., Lin, X., Ou, W., and Jiang, P. (2019). BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from Transformer. https://arxiv.org/abs/1904.06690.
23 [Wang et al. 2013] Wang, H., Chen, B., and Li, W.-J. (2013). Collaborative Topic Regression with Social Regularization for Tag Recommendation. In Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI).
24 [Wang et al. 2022] Wang, W., Tang, T., Xia, F., Gong, Z., Chen, Z., and Liu, H. (2022). Collaborative Filtering With Network Representation Learning for Citation Recommendation. IEEE Transactions on Big Data, 8(5):1233–1246.
25 [Wang et al. 2019] Wang, X., He, X., Cao, Y., Liu, M., and Chua, T.-S. (2019). KGAT: Knowledge Graph Attention Network for Recommendation. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 950–958. Association for Computing Machinery.
26 [Wu et al. 2019] Wu, S., Tang, Y., Zhu, Y., Wang, L., Xie, X., and Tan, T. (2019). Session-Based Recommendation with Graph Neural Networks. https://arxiv.org/pdf/1811.00855.
27 [Xie et al. 2021] Xie, Y., Sun, Y., and Bertino, E. (2021). Learning Domain Semantics and Cross-Domain Correlations for Paper Recommendation. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’21), pages 706–715, New York, NY, USA. Association for Computing Machinery.
28 [Yang et al. 2020] Yang, Y., Cer, D., Ahmad, A., Guo, M., Law, J., Constant, N., Hernandez Abrego, G., Yuan, S., Tar, C., Sung, Y.-h., Strope, B., and Kurzweil, R. (2020). Multilingual Universal Sentence Encoder for Semantic Retrieval. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 87–94, Online. Association for Computational Linguistics.
29 [Zhang et al. 2019] Zhang, Y., Wang, M., Gottwalt, F., Saberi, M., and Chang, E. (2019). Ranking Scientific Articles Based on Bibliometric Networks with a Weighting Scheme. Journal of Informetrics, 13(2):616–634.