1 |
Amir, A. and Keselman, D. (1997). Maximum agreement subtree in a set of evolutionary trees: Metrics and efficient algorithms. SIAM Journal on Computing, 26(6):1656 a 1669.
|
|
2 |
Babuji, Y. N. et al. (2019). Parsl: Pervasive parallel programming in python. In Weissman, J. B., Butt, A. R., and Smirni, E., editors, Proc. of the 28th HPDC, pages 25 a 36. ACM.
|
|
3 |
Bryant, D. (2003). A classification of consensus methods for hylogenetics, pages 163 a 183.
|
|
4 |
de Oliveira, D. C. M., Liu, J., and Pacitti, E. (2019). Data Intensive Workflow Management: For Clouds and Data-Intensive and Scalable Computing Environments. Synthesis Lectures on Data Management. Morgan & Claypool Publishers.
|
|
5 |
Deepak, A. et al. (2014). Evominer: frequent subtree mining in hylogenetic databases. Knowledge and Information Systems, 41(3):559 a 590.
|
|
6 |
Deepak, A. and Fern ́andez Baca, D. (2014). Enumerating all maximal frequent subtrees in collections of phylogenetic trees. Algorithms for Molecular Biology, 9(1):16.
|
|
7 |
Felsenstein, J. (1983). Statistical inference of phylogenies. Journal of the Royal Statistical Society. Series A (General), 146(3):246 a 272.
|
|
8 |
Goloboff, P. A. et al. (2009). Phylogenetic analysis of 73 060 taxa corroborates major eukaryotic groups. Cladistics, 25(3):211 a 230.
|
|
9 |
Guedes, T., Ocana, K., and de Oliveira, D. (2017). Sciphylominer: um workflow para mineracao de dados filogemonicos de protozoarios. In Anais do XI Brazilian e-Science Workshop, pages 69 a 76, Porto Alegre, RS, Brasil. SBC.
|
|
10 |
Molloy, E. K. and Warnow, T. (2019). TreeMerge: a new method for improving the scalability of species tree estimation methods. Bioinformatics, 35(14):i417 a i426.
|
|
11 |
Ocana, K. A. C. S. et al. (2011). Sciphy: A cloud based workflow for phylogenetic analysis of drug targets in protozoan genomes. In Proc. of the 6th Brazilian Symposium on Bioinformatics, pages 66 a 70. Springer.
|
|
12 |
Ocana, K. A. and Davila, A. M. (2011). Phylogenomics based reconstruction of protozoan species tree. Evol Bioinform Online, 7:107 a 121.
|
|
13 |
Puigbo, P., Wolf, Y. I., and Koonin, E. V. (2019). Genome Wide Comparative Analysis of Phylogenetic Trees: The Prokaryotic Forest of Life, pages 241 a 269. Springer New York, New York, NY.
|
|
14 |
Ramu, A., Kahveci, T., and Burleigh, J. G. (2012). A scalable method for identifying frequent subtrees in sets of large phylogenetic trees. BMC Bioinformatics, 13(1):256.
|
|
15 |
Rasmussen, D. A. and Guo, F. (2022). Espalier: Efficient tree reconciliation and arg reconstruction using maximum agreement forests. bioRxiv.
|
|
16 |
Saitou, N. and Nei, M. (1987). The neighbor joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 4(4):406 a 425.
|
|
17 |
Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994). ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res, 22(22):4673 a 4680.
|
|
18 |
Vilella, A. J., Severin, J., Ureta-Vidal, A., Heng, L., Durbin, R., and Birney, E. (2009). Ensemblcompara genetrees: Complete, duplication aware phylogenetic trees in vertebrates. Genome research, 19 2:327 a 35.
|
|