1 |
Breen, J., Allen, K., Zucker, K., Godson, L., Orsi, N., and Ravikumar, N. (2024).
Histopathology foundation models enable accurate ovarian cancer subtype classification. arXiv preprint arXiv:2405.09990.
|
|
2 |
Breen, J., Allen, K., Zucker, K., Godson, L., Orsi, N. M., and Ravikumar, N. (2025).
A comprehensive evaluation of histopathology foundation models for ovarian cancer
subtype classification. NPJ Precision Oncology, 9(1):33.
|
|
3 |
Gonzalez, R. C. and Woods, R. E. (2018). Digital Image Processing. Pearson, 4th edition
|
|
4 |
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778.
|
|
5 |
Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. (2017). Densely connected
convolutional networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 4700–4708
|
|
6 |
INCA (2023). Cancer incidence estimates in brazil – 2023 [in portuguese]. https:
//www.inca.gov.br.
|
|
7 |
Kasture, S., Mahajan, A., Patil, P., and Deshpande, S. (2021). A New Deep Learning
Method for Automatic Ovarian Cancer Prediction. International Journal of Advanced
Computer Science and Applications, 12(5):560–566.
|
|
8 |
Kussaibi, H., Alibrahim, E., Alamer, E., Alhaji, G., Alshehab, S., Shabib, Z., Alsafwani,
N., and Menezes, R. G. (2024). Lightgbm-based classification of ovarian cancer subtypes from histological images using resnet50. medRxiv.
|
|
9 |
Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., and Guo, B. (2021). Swin
transformer: Hierarchical vision transformer using shifted windows. In Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV), pages 10012–
10022.
|
|
10 |
Radhakrishnan, M., Sampathila, N., Muralikrishna, H., and Swathi, K. S. (2024). Advancing ovarian cancer diagnosis through deep learning and explainable ai: A multiclassification approach. IEEE Access, 12:116968–116986.
|
|
11 |
Simonyan, K. and Zisserman, A. (2015). Very deep convolutional networks for largescale image recognition. In Proceedings of the International Conference on Learning
Representations (ICLR).
|
|
12 |
Vedana, A. B., Benevides, A. B., Farage, A. P. C., Moreira, G. A., Maximo, L. R. M. I., ´
Brandao, R. S., Ubiali, I. R., Jardini, E. P., Bezerra, P. T. B., Da Silva, R. J. C., ˜
et al. (2024). Artificial intelligence in diagnostic medicine [in portuguese]. Brazilian
Journal of Implantology and Health Sciences, 6(11):765–794.
|
|
13 |
Vilela, A. D., Silva, J. P., and Oliveira, M. C. (2022). Evaluation metrics for machine
learning models in healthcare [in portuguese]. Revista de Engenharia e Pesquisa Aplicada, 7(2):34–45.
|
|
14 |
Werner, D. A. (2019). The fourth industrial revolution and artificial intelligence: A study
on its concepts, impacts, and possible applications in law through legal text analysis for predictive classification of judicial decisions [in portuguese]. Master’s thesis,
Universidade do Vale do Rio dos Sinos (UNISINOS), Sao Leopoldo, RS, Brazil.
|
|