1 |
Aggarwal, C. C. (2016). Recommender Systems - The Textbook. Springer. doi:10.1007/978-3-319-29659-3.
|
|
2 |
Bertin-Mahieux, T. et al. (2011). The Million Song Dataset. In Proc. of Int’l Society for Music Information Retrieval Conf. (ISMIR), pages 591–596.
|
|
3 |
Byrd, D. and Crawford, T. (2002). Problems of music information retrieval in the real world. Information Processing & Management, 38(2):249–272. doi:10.1016/S0306-4573(01)00033-4.
|
|
4 |
Cosimato, A. et al. (2019). The conundrum of success in music: Playing it or talking about it? IEEE Access, 7:123289–123298. doi:10.1109/ACCESS.2019.2937743
|
|
5 |
Çimen, A. and Kayis, E. (2021). A longitudinal model for song popularity prediction. In DATA, pages 96–104. SciTePress. doi:10.5220/0010607700960104
|
|
6 |
Garimella, K. and West, R. (2019). Hot streaks on social media. In International Conference on Web and Social Media, pages 170–180. AAAI Press.
|
|
7 |
Janosov, M., Battiston, F., and Sinatra, R. (2020). Success and luck in creative careers. EPJ Data Sci., 9(1):9. doi:10.1140/epjds/s13688-020-00227-w.
|
|
8 |
Karydis, I., Gkiokas, A., and Katsouros, V. (2016). Musical track popularity mining dataset. In IFIP AIAI, pages 562–572. doi:10.1007/978-3-319-44944-9 50
|
|
9 |
Keogh, E. J. and Pazzani, M. J. (2000). Scaling up dynamic time warping for datamining applications. In ACM SIGKDD, pages 285–289. ACM. doi:10.1145/347090.347153
|
|
10 |
Liu, L., Wang, Y., Sinatra, R., Giles, C. L., Song, C., and Wang, D. (2018). Hot streaks in artistic, cultural, and scientific careers. Nature, 559(7714):396–399. doi:10.1038/s41586-018-0315-8
|
|
11 |
Melchiorre, A. B. et al. (2021). Investigating gender fairness of recommendation algorithms in the music domain. Information Processing & Management, 58(5):102666. doi:10.1016/j.ipm.2021.102666
|
|
12 |
Oliveira, G. P. (2021). Analyses of musical success based on time, genre and collaboration. Master’s thesis, Universidade Federal de Minas Gerais, Brazil.
|
|
13 |
Oliveira, G. P., Barbosa, G. R. G., Melo, B. C., Silva, M. O., Seufitelli, D. B., Lacerda, A., and Moro, M. M. (2021). MUHSIC: An Open Dataset with Temporal Musical Success Information. Zenodo. doi:10.5281/zenodo.5168695.
|
|
14 |
Oliveira, G. P., Silva, M. O., Seufitelli, D. B., Lacerda, A., and Moro, M. M. (2020). Detecting collaboration profiles in success-based music genre networks. In Procs. Int’l Society for Music Information Retrieval Conference (ISMIR), Montreal, Canada.
|
|
15 |
Pachet, F. (2011). Hit song science. In Tao Li, Mitsunori Ogihara, G. T., editor, Music Data Mining, chapter 10, pages 305–326. CRC Press, New York, NY, USA.
|
|
16 |
Scaringella, N., Zoia, G., and Mlynek, D. (2006). Automatic genre classification of music content: a survey. IEEE Signal Process. Mag., 23(2):133–141. doi:10.1109/MSP.2006.1598089.
|
|
17 |
Silva, M. O., Rocha, L. M., and Moro, M. M. (2019). MusicOSet: An Enhanced Open Dataset for Music Data Mining. In SBBD DSW, pages 408–417. SBC.
|
|
18 |
Zangerle, E., Huber, R., and Yang, M. V. Y.-H. (2019). Hit Song Prediction: Leveraging Low- and High-Level Audio Features. In Proc. of Int’l Society for Music Information Retrieval Conf. (ISMIR), pages 319–326.
|
|