SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Fabrício Silva(fabricio.asilva@ufv.br)
2 Guilherme Oliveira(guilherme.sergio@ufv.br)
3 Ricardo Ferreira(ricardo.vieira@cinnecta.com)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Bartels, C. Cluster analysis for customer segmentation with open banking data. In 2022 3rd Asia Service Sciences and Software Engineering Conference. ASSE’ 22. Association for Computing Machinery, New York, NY, USA, pp. 87–94, 2022
2 Bertsimas, D., Orfanoudaki, A., and Wiberg, H. M. Interpretable clustering: an optimization approach. Machine Learning vol. 110, pp. 89–138, 2020.
3 Breiman, L. Random forests. Machine learning 45 (1): 5–32, 2001.
4 Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. Classification and regression trees, 1983.
5 Corral, G., Armengol, E., Fornells, A., and Golobardes, E. Explanations of unsupervised learning clustering applied to data security analysis. Neurocomputing 72 (13): 2754–2762, 2009. Hybrid Learning Machines (HAIS 2007) / Recent Developments in Natural Computation (ICNC 2007)
6 Dasgupta, S., Frost, N., Moshkovitz, M., and Rashtchian, C. Explainable k-means and k-medians clustering. ICML’20. JMLR.org, 2020.
7 Ellis, C. A., Sendi, M. S. E., Plis, S., Miller, R. L., and Calhoun, V. D. Algorithm-agnostic explainability for unsupervised clustering. ArXiv vol. abs/2105.08053, 2021
8 Fraiman, R., Ghattas, B., and Svarc, M. Interpretable clustering using unsupervised binary trees. Advances in Data Analysis and Classification vol. 7, pp. 125–145, 2013.
9 Frost, N., Moshkovitz, M., and Rashtchian, C. Exkmc: Expanding explainable k-means clustering. ArXiv vol. abs/2006.02399, 2020.
10 Ghahramani, Z. Unsupervised learning. In Summer school on machine learning. Springer, pp. 72–112, 2003.
11 Li, Y., Chu, X., Tian, D., Feng, J., and Mu, W. Customer segmentation using k-means clustering and the adaptive particle swarm optimization algorithm. Applied Soft Computing vol. 113, pp. 107924, 2021.
12 Molnar, C. Interpretable Machine Learning, 2022.
13 Morichetta, A., Casas, P., and Mellia, M. Explain-it: Towards explainable ai for unsupervised network traffic analysis. Big-DAMA ’19. Association for Computing Machinery, New York, NY, USA, pp. 22–28, 2019.
14 Xu, R. and Wunsch, D. Survey of clustering algorithms. IEEE Transactions on neural networks 16 (3): 645–678, 2005.
15 Yu, Z., Sohail, A., Nofal, T. A., and Tavares, J. M. R. S. Explainability Of Neural Network Clustering In Interpreting The Covid-19 Emergency Data. FRACTALS (fractals) 30 (05): 1–12, August, 2022.