1 |
Belhadi, A., Djenouri, Y., Lin, J. C.-W., and Cano, A. (2020). Trajectory outlier detection: Algorithms, taxonomies, evaluation, and open challenges. ACM Transactions on Management Information Systems (TMIS), 11(3):1–29.
|
|
2 |
Bessa, A., Silva, F. d. M., Nogueira, R. F., Bertini, E., and Freire, J. (2016). Riobusdata: Outlier detection in bus routes of rio de janeiro. arXiv preprint arXiv:1601.06128.
|
|
3 |
Bose, R. (2009). Advanced analytics: opportunities and challenges. Industrial Management & Data Systems.
|
|
4 |
Buja, A., Cook, D., Hofmann, H., Lawrence, M., Lee, E.-K., Swayne, D. F., and Wickham, H. (2009). Statistical inference for exploratory data analysis and model diagnostics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367(1906):4361–4383.
|
|
5 |
Chen, C., Zhang, D., Castro, P. S., Li, N., Sun, L., Li, S., and Wang, Z. (2013). iboat: Isolation-based online anomalous trajectory detection. IEEE Transactions on Intelligent Transportation Systems, 14(2):806–818.
|
|
6 |
Cruz, M. and Barbosa, L. (2020). Learning gps point representations to detect anomalous bus trajectories. IEEE Access, 8:229006–229017.
|
|
7 |
Liu, K., Gao, S., Qiu, P., Liu, X., Yan, B., and Lu, F. (2017). Road2vec: Measuring traffic interactions in urban road system from massive travel routes. ISPRS International Journal of Geo-Information, 6(11):321.
|
|
8 |
Liu, Y., Zhao, K., Cong, G., and Bao, Z. (2020). Online anomalous trajectory detection with deep generative sequence modeling. In 2020 IEEE 36th International Conference on Data Engineering (ICDE), pages 949–960. IEEE.
|
|
9 |
Pappalardo, L., Simini, F., Barlacchi, G., and Pellungrini, R. (2019). scikit-mobility: A python library for the analysis, generation and risk assessment of mobility data. arXiv preprint arXiv:1907.07062.
|
|