1 |
Barddal, J. P., Gomes, H. M., Enembreck, F., and Pfahringer, B. A survey on feature drift adaptation:
Definition, benchmark, challenges and future directions. Journal of Systems and Software vol. 127, pp. 278–294, 2017.
|
|
2 |
Bifet, A. Adaptive stream mining: Pattern learning and mining from evolving data streams. Frontiers in Artificial Intelligence and Applications vol. 207, pp. 1–212, 01, 2010.
|
|
3 |
Carastan-Santos, D., De Camargo, R. Y., Trystram, D., and Zrigui, S. One can only gain by replacing easy
backfilling: A simple scheduling policies case study. In 2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID). pp. 1–10, 2019.
|
|
4 |
Frank, E., Hall, M., Holmes, G., Kirkby, R., Pfahringer, B., Witten, I. H., and Trigg, L. pp. 1269–1277.
In , Weka-A Machine Learning Workbench for Data Mining. Springer, pp. 1269–1277, 2010.
|
|
5 |
Gama, J. a., Sebastião, R., and Rodrigues, P. P. Issues in evaluation of stream learning algorithms. In Pro-
ceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’09. Association for Computing Machinery, New York, NY, USA, pp. 329–338, 2009.
|
|
6 |
Gama, J. a., Žliobaitundefined, I., Bifet, A., Pechenizkiy, M., and Bouchachia, A. A survey on concept drift
adaptation. ACM Comput. Surv. 46 (4), mar, 2014.
|
|
7 |
Menear, K., Nag, A., Perr-Sauer, J., Lunacek, M., Potter, K., and Duplyakin, D. Mastering hpc runtime
prediction: From observing patterns to a methodological approach. In Practice and Experience in Advanced Research Computing 2023: Computing for the Common Good. PEARC ’23. Association for Computing Machinery, New York, NY, USA, pp. 75–85, 2023.
|
|
8 |
Mu’alem, A. and Feitelson, D. Utilization, predictability, workloads, and user runtime estimates in scheduling the IBM SP2 with backfilling. IEEE Transactions on Parallel and Distributed Systems 12 (6): 529–543, 2001.
|
|
9 |
Mustafiz, S. and Islam, M. R. State-of-the-art petroleum reservoir simulation. Petroleum Science and Technology 26 (10-11): 1303–1329, 2008.
|
|
10 |
Nunes, A. L., Gallo, B., Lopes, B., Portella, F. A., Viterbo, J., Drummond, L. M. A., Andrade, L.,
de Lima, M., Estrela, P. J. B., and Malini, R. Q. Two-step estimation strategy for predicting petroleum
reservoir simulation jobs runtime on an hpc cluster. Concurrency and Computation: Practice and Experience 37 (4-5): e70026, 2025.
|
|
11 |
Nunes, A. L., Portella, F., Estrela, P., Malini, R., Lopes, B., Bittencourt, A., Leite, G., Coutinho, G., and Drummond, L. Prediction of Reservoir Simulation Jobs Times Using a Real-World SLURM Log. In Anais do XXIV Simpósio em Sistemas Computacionais de Alto Desempenho. SBC, Porto Alegre/RS, pp. 49–60, 2023.
|
|
12 |
Portella, F., Buchaca, D., Rodrigues, J. R., and Berral, J. L. TunaOil: A tuning algorithm strategy for
reservoir simulation workloads. Journal of Computational Science vol. 63, 2022.
|
|
13 |
Quinlan, J. R. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, 1993.
|
|
14 |
Yoo, A. B., Jette, M. A., and Grondona, M. SLURM: Simple Linux Utility for Resource Management. In Job
Scheduling Strategies for Parallel Processing. Springer, pp. 44–60, 2003.
|
|
15 |
Žliobait ˙e, I. Learning under concept drift: an overview, 2010.
|
|