1 |
Li, X., Sun, L., Ling, M., and Peng, Y. (2023b). A survey of graph neural
network based recommendation in social networks. Neurocomputing, 549:126441.
|
|
2 |
Ahuja, R., Solanki, A., and Nayyar, A. (2019). Movie recommender
system using k-means clustering and k-nearest neighbor. In 2019 9th International
Conference on Cloud Computing, Data Science & Engineering (Confluence), pages
263–268. IEEE.
|
|
3 |
Lin, D., Guo, Y., Sun, H., and Chen, Y. (2022). Fedcluster: A federated
learning framework for cross-device private ecg classification. In IEEE INFOCOM 2022-
IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS),
pages 1–6. IEEE.
|
|
4 |
Ali, W., Kumar, R., Deng, Z., Wang, Y., and Shao, J. (2021). A federated
learning approach for privacy protection in context-aware recommender systems. The
Computer Journal, 64(7):1016–1027.
|
|
5 |
Lu, L., Medo, M., Yeung, C. H., Zhang, Y.-C., Zhang, Z.-K., and Zhou, T. ¨
(2012). Recommender systems. Physics reports, 519(1):1–49.
|
|
6 |
Ammad-Ud-Din, M., Ivannikova, E., Khan, S. A., Oyomno,
W., Fu, Q., Tan, K. E., and Flanagan, A. (2019). Federated collaborative filtering for privacy-preserving personalized recommendation system. arXiv preprint
arXiv:1901.09888.
|
|
7 |
McMahan, H. B., Moore, E., Ramage, D., and y Arcas, B. A.
(2016). Federated learning of deep networks using model averaging. CoRR,
abs/1602.05629.
|
|
8 |
Arafeh, M., Hammoud, A., Otrok, H., Mourad, A., Talhi, C., and
Dziong, Z. (2022). Independent and identically distributed (iid) data assessment in federated learning. In GLOBECOM 2022-2022 IEEE Global Communications Conference,
pages 293–298. IEEE.
|
|
9 |
Shahbazi, Z. and Byun, Y.-C. (2019). Product recommendation based on content-based filtering using xgboost classifier. Int. J. Adv. Sci. Technol,
29:6979–6988.
|
|
10 |
Beutel, D. J., Topal, T., Mathur, A., Qiu, X., Parcollet, T., and Lane,
N. D. (2020). Flower: A friendly federated learning research framework. CoRR,
abs/2007.14390.
|
|
11 |
Sharma, L. and Gera, A. (2013). A survey of recommendation system: Research challenges. International Journal of Engineering Trends and
Technology (IJETT), 4(5):1989–1992.
|
|
12 |
Christakou, C., Vrettos, S., and Stafylopatis, A. (2007). A hybrid
movie recommender system based on neural networks. International Journal on
Artificial Intelligence Tools, 16(05):771–792.
|
|
13 |
Shwartz-Ziv, R. and Armon, A. (2022). Tabular data:
Deep learning is not all you need. Information Fusion, 81:84–90.
|
|
14 |
Fang, H. and Qian, Q. (2021). Privacy preserving machine learning
with homomorphic encryption and federated learning. Future Internet, 13(4):94.
|
|
15 |
ur Rehman, M. H., Dirir, A. M., Salah, K., Damiani, E., and
Svetinovic, D. (2021). Trustfed: A framework for fair and trustworthy cross-device
federated learning in iiot. IEEE Transactions on Industrial Informatics, 17(12):8485–
8494.
|
|
16 |
Fernandez, C. (2017). The paradox of choice: why more is less. Vikalpa,
42(4):265–267.
|
|
17 |
Zhang, C., Li, S., Xia, J., Wang, W., Yan, F., and Liu, Y. (2020).
{BatchCrypt}: Efficient homomorphic encryption for {Cross-Silo} federated learning.
In 2020 USENIX annual technical conference (USENIX ATC 20), pages 493–506.
|
|
18 |
Huang, C., Huang, J., and Liu, X. (2022). Cross-silo federated
learning: Challenges and opportunities. arXiv preprint arXiv:2206.12949.
|
|
19 |
Zhang, L., Luo, T., Zhang, F., and Wu, Y. (2018). A recommendation
model based on deep neural network. IEEE Access, 6:9454–9463.
|
|
20 |
Jagadish, H. V. (2015). Big data and science: Myths and reality. Big
Data Research, 2(2):49–52.
|
|
21 |
Zhang, Y. (2022). Music recommendation system and recommendation model based on convolutional neural network. Mobile Information Systems,
2022(1):3387598.
|
|
22 |
Jimenez, G. D. M., Anagnostopoulos, A., Chatzigiannakis, I., and
Vitaletti, A. (2024). Fedartml: A tool to facilitate the generation of non-iid datasets in a
controlled way to support federated learning research. IEEE Access.
|
|
23 |
Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., and Chandra, V. (2018).
Federated learning with non-iid data. arXiv preprint arXiv:1806.00582.
|
|
24 |
Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M.,
Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode, G., Cummings, R., et al. (2021).
Advances and open problems in federated learning. Foundations and trends® in machine
learning, 14(1–2):1–210.
|
|
25 |
Zhu, H., Xu, J., Liu, S., and Jin, Y. (2021). Federated learning on non-iid
data: A survey. Neurocomputing, 465:371–390.
|
|
26 |
Karimireddy, S. P., Jaggi, M., Kale, S., Mohri, M., Reddi, S.,
Stich, S. U., and Suresh, A. T. (2021). Breaking the centralized barrier for cross-device
federated learning. Advances in Neural Information Processing Systems, 34:28663–
28676.
|
|
27 |
Zhu, S., Zeng, J., Wang, S., Sun, Y., Li, X., Yao, Y., and Peng, Z. (2024).
On admm in heterogeneous federated learning: Personalization, robustness, and fairness.
arXiv preprint arXiv:2407.16397.
|
|
28 |
Li, Q., Diao, Y., Chen, Q., and He, B. (2022). Federated learning on
non-iid data silos: An experimental study. In 2022 IEEE 38th international conference
on data engineering (ICDE), pages 965–978. IEEE.
|
|
29 |
Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A., and Smith, V.
(2020). Federated optimization in heterogeneous networks. Proceedings of Machine
learning and systems, 2:429–450.
|
|
30 |
Li, W., Yin, Y., Quan, X., and Zhang, H. (2019). Gene expression value
prediction based on xgboost algorithm. Frontiers in genetics, 10:1077.
|
|
31 |
Li, X., Fei, J., Xie, J., Li, D., Jiang, H., Wang, R., and Qi, Z. (2023a).
Open set recognition for malware traffic via predictive uncertainty. Electronics,
12(2):323.
|
|
32 |
Li, X., Sun, L., Ling, M., and Peng, Y. (2023b). A survey of graph neural
network based recommendation in social networks. Neurocomputing, 549:126441.
|
|
33 |
Lin, D., Guo, Y., Sun, H., and Chen, Y. (2022). Fedcluster: A federated
learning framework for cross-device private ecg classification. In IEEE INFOCOM 2022-
IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS),
pages 1–6. IEEE.
|
|
34 |
Lu, L., Medo, M., Yeung, C. H., Zhang, Y.-C., Zhang, Z.-K., and Zhou, T. ¨
(2012). Recommender systems. Physics reports, 519(1):1–49.
|
|
35 |
McMahan, H. B., Moore, E., Ramage, D., and y Arcas, B. A.
(2016). Federated learning of deep networks using model averaging. CoRR,
abs/1602.05629.
|
|
36 |
Shahbazi, Z. and Byun, Y.-C. (2019). Product recommendation based on content-based filtering using xgboost classifier. Int. J. Adv. Sci. Technol,
29:6979–6988.
|
|
37 |
Sharma, L. and Gera, A. (2013). A survey of recommendation system: Research challenges. International Journal of Engineering Trends and
Technology (IJETT), 4(5):1989–1992.
|
|
38 |
Shwartz-Ziv, R. and Armon, A. (2022). Tabular data:
Deep learning is not all you need. Information Fusion, 81:84–90.
|
|
39 |
ur Rehman, M. H., Dirir, A. M., Salah, K., Damiani, E., and
Svetinovic, D. (2021). Trustfed: A framework for fair and trustworthy cross-device
federated learning in iiot. IEEE Transactions on Industrial Informatics, 17(12):8485–
8494.
|
|
40 |
Zhang, C., Li, S., Xia, J., Wang, W., Yan, F., and Liu, Y. (2020).
{BatchCrypt}: Efficient homomorphic encryption for {Cross-Silo} federated learning.
In 2020 USENIX annual technical conference (USENIX ATC 20), pages 493–506.
|
|
41 |
Zhang, L., Luo, T., Zhang, F., and Wu, Y. (2018). A recommendation
model based on deep neural network. IEEE Access, 6:9454–9463.
|
|
42 |
Zhang, Y. (2022). Music recommendation system and recommendation model based on convolutional neural network. Mobile Information Systems,
2022(1):3387598.
|
|
43 |
Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., and Chandra, V. (2018).
Federated learning with non-iid data. arXiv preprint arXiv:1806.00582.
|
|
44 |
Zhu, H., Xu, J., Liu, S., and Jin, Y. (2021). Federated learning on non-iid
data: A survey. Neurocomputing, 465:371–390.
|
|
45 |
Zhu, S., Zeng, J., Wang, S., Sun, Y., Li, X., Yao, Y., and Peng, Z. (2024).
On admm in heterogeneous federated learning: Personalization, robustness, and fairness.
arXiv preprint arXiv:2407.16397.
|
|