1 |
Aji, A., Vo, H., and Wang, F. (2015). Effective spatial data partitioning for scalable query processing. CoRR, abs/1509.00910
|
|
2 |
Al-Badarneh, A. F., Al-Alaj, A. S., and Mahafzah, B. A. (2013). Multi small index (MSI): A spatial indexing structure. Journal of Information Science, 39(5):643–660
|
|
3 |
Antoine, E., Ramamohanarao, K., Shao, J., and Zhang, R. (2011). Accelerating spatial join operations using bit-indices. In Proc. of the 22nd Australasian Database Conference, volume 115, page 123–132
|
|
4 |
Chaudhry, N., Yousaf, M. M., and Khan, M. T. (2020). Indexing of real time geospatial data by IoT enabled devices: Opportunities, challenges and design considerations. Journal of Ambient Intelligence and Smart Environments, 12:281–312
|
|
5 |
Doraiswamy, H., Vo, H. T., Silva, C. T., and Freire, J. (2016). A GPU-Based Index to Support Interactive Spatio-Temporal Queries over Historical Data. In 2016 IEEE 32nd International Conference on Data Engineering (ICDE), Helsinki, Finland
|
|
6 |
Eldawy, A. and Mokbel, M. F. (2015). Spatialhadoop: A mapreduce framework for spatial data. In Proc. of the 31st International Conference on Data Engineering, pages 1352–1363
|
|
7 |
Gaede, V. and Günther, O. (1998). Multidimensional access methods. ACM Computing Surveys, 30(2):170–231
|
|
8 |
Guttman, A. (1984). R-trees: a dynamic index structure for spatial searching. ACM Sigmod Record, 14(2):47–57
|
|
9 |
Imawan, A., Putri, F., and Kwon, J. (2015). TiQ: A Timeline query processing system over Road Traffic Data. In 2015 IEEE International Conference on Smart City, Chengdu, China
|
|
10 |
Lemire, D., Ssi-Yan-Kai, G., and Kaser, O. (2018). Consistently faster and smaller compressed bitmaps with roaring. Software: Practice and Experience, 46:1547–1569
|
|
11 |
Mahmood, A. R., Punni, S., and Aref, W. G. (2019). Spatio-temporal access methods: a survey (2010 - 2017). Geoinformatica, 23:1–36
|
|
12 |
Neto, C. J., Ciferri, R. R., and Santos, M. T. P. (2013). HSTB-index: A hierarchical spatio-temporal bitmap indexing technique. In SBBD - Workshop de Teses e Dissertações
|
|
13 |
Nievergelt, J., Hinterberger, H., and Sevcik, K. C. (1984). The grid file: An adaptable, symmetric multikey file structure. ACM Transactions on Database Systems, 9(1):38–71
|
|
14 |
Nobari, S., Qu, Q., and Jensen, C. S. (2017). In-memory spatial join: The data matters! In Proc. of the 20th International Conference on Extending Database Technology (EDBT), pages 462–465
|
|
15 |
Patel, J. M. and DeWitt, D. J. (1996). Partition based spatial–merge join. In Proc. of the 1996 ACM SIGMOD international conference on Management of data, pages 259–270
|
|
16 |
Patel, J. M., Yu, J., Kabra, N., Tufte, K. A., Nag, B., Burger, J., Hall, N. E., Ramasamy, K., Lueder, R., Ellmann, C. J., Kupsch, J., Guo, S., Larson, J. G., Witt, D. J. D., and Naughton, J. F. (1997). Building a scaleable geo-spatial dbms: technology, implemen- tation, and evaluation. In Proc. of the 1997 ACM SIGMOD international conference on Management of data, pages 336–347
|
|
17 |
Pavlovic, M., Heinis, T., Tauheed, F., Karras, P., and Ailamaki, A. (2016). Transformers: Robust spatial joins on non-uniform data distributions. In Proc. of the 32nd International Conference on Data Engineering (ICDE), pages 673–684
|
|
18 |
Sevcik, K. C. and Koudas, N. (1996). Filter trees for managing spatial data over a range of size granularities. In Proc. of the 22nd International Conference on Very Large Data Bases (VLDB), page 16–27
|
|
19 |
Shin, J., Mahmood, A., and Aref, W. (2019). An investigation of grid-enabled tree indexes for spatial query processing. In Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pages 169–178
|
|
20 |
Shohdy, S., Su, Y., and Agrawal, G. (2015). Load balancing and accelerating parallel spatial join operations using bitmap indexing. In Proc of the IEEE 22nd International Conference on High Performance Computing (HiPC), pages 396–405
|
|
21 |
Siqueira, T. L. L., de Aguiar Ciferri, C. D., Times, V. C., and Ciferri, R. R. (2012). The SB-index and the HSB-index: efficient indices for spatial data warehouses. Geoinformatica, 16(1):165–205
|
|
22 |
Tsitsigkos, D., Bouros, P., Mamoulis, N., and Terrovitis, M. (2019). Parallel in-memory evaluation of spatial joins. In Proc. of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pages 516–519
|
|
23 |
Vo, H., Aji, A., and Wang, F. (2014). SATO: A spatial data partitioning framework for scalable query processing. In Proc. of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, page 545–548
|
|
24 |
Wang, J., Lin, Y. C., and S., S. (2017). An experimental study of bitmap compression vs. inverted list compression. In Proceedings of the 2017 ACM SIGMOD International Conference on Management of Data, New York, NY
|
|
25 |
Yu, J., Wu, J., and Sarwat, M. (2015). Geospark: A cluster computing framework for processing large-scale spatial data. In Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, New York, NY, USA. Association for Computing Machinery
|
|