SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Mariana Duarte(mmgduarte@inf.ufpr.br)
2 Marcos Pontarolo(mvp19@inf.ufpr.br)
3 Rebeca Schroeder(rebeca.schroeder@udesc.br)
4 Carmem Hara(carmem@inf.ufpr.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Aji, A., Vo, H., and Wang, F. (2015). Effective spatial data partitioning for scalable query processing. CoRR, abs/1509.00910
2 Al-Badarneh, A. F., Al-Alaj, A. S., and Mahafzah, B. A. (2013). Multi small index (MSI): A spatial indexing structure. Journal of Information Science, 39(5):643–660
3 Antoine, E., Ramamohanarao, K., Shao, J., and Zhang, R. (2011). Accelerating spatial join operations using bit-indices. In Proc. of the 22nd Australasian Database Conference, volume 115, page 123–132
4 Chaudhry, N., Yousaf, M. M., and Khan, M. T. (2020). Indexing of real time geospatial data by IoT enabled devices: Opportunities, challenges and design considerations. Journal of Ambient Intelligence and Smart Environments, 12:281–312
5 Doraiswamy, H., Vo, H. T., Silva, C. T., and Freire, J. (2016). A GPU-Based Index to Support Interactive Spatio-Temporal Queries over Historical Data. In 2016 IEEE 32nd International Conference on Data Engineering (ICDE), Helsinki, Finland
6 Eldawy, A. and Mokbel, M. F. (2015). Spatialhadoop: A mapreduce framework for spatial data. In Proc. of the 31st International Conference on Data Engineering, pages 1352–1363
7 Gaede, V. and Günther, O. (1998). Multidimensional access methods. ACM Computing Surveys, 30(2):170–231
8 Guttman, A. (1984). R-trees: a dynamic index structure for spatial searching. ACM Sigmod Record, 14(2):47–57
9 Imawan, A., Putri, F., and Kwon, J. (2015). TiQ: A Timeline query processing system over Road Traffic Data. In 2015 IEEE International Conference on Smart City, Chengdu, China
10 Lemire, D., Ssi-Yan-Kai, G., and Kaser, O. (2018). Consistently faster and smaller compressed bitmaps with roaring. Software: Practice and Experience, 46:1547–1569
11 Mahmood, A. R., Punni, S., and Aref, W. G. (2019). Spatio-temporal access methods: a survey (2010 - 2017). Geoinformatica, 23:1–36
12 Neto, C. J., Ciferri, R. R., and Santos, M. T. P. (2013). HSTB-index: A hierarchical spatio-temporal bitmap indexing technique. In SBBD - Workshop de Teses e Dissertações
13 Nievergelt, J., Hinterberger, H., and Sevcik, K. C. (1984). The grid file: An adaptable, symmetric multikey file structure. ACM Transactions on Database Systems, 9(1):38–71
14 Nobari, S., Qu, Q., and Jensen, C. S. (2017). In-memory spatial join: The data matters! In Proc. of the 20th International Conference on Extending Database Technology (EDBT), pages 462–465
15 Patel, J. M. and DeWitt, D. J. (1996). Partition based spatial–merge join. In Proc. of the 1996 ACM SIGMOD international conference on Management of data, pages 259–270
16 Patel, J. M., Yu, J., Kabra, N., Tufte, K. A., Nag, B., Burger, J., Hall, N. E., Ramasamy, K., Lueder, R., Ellmann, C. J., Kupsch, J., Guo, S., Larson, J. G., Witt, D. J. D., and Naughton, J. F. (1997). Building a scaleable geo-spatial dbms: technology, implemen- tation, and evaluation. In Proc. of the 1997 ACM SIGMOD international conference on Management of data, pages 336–347
17 Pavlovic, M., Heinis, T., Tauheed, F., Karras, P., and Ailamaki, A. (2016). Transformers: Robust spatial joins on non-uniform data distributions. In Proc. of the 32nd International Conference on Data Engineering (ICDE), pages 673–684
18 Sevcik, K. C. and Koudas, N. (1996). Filter trees for managing spatial data over a range of size granularities. In Proc. of the 22nd International Conference on Very Large Data Bases (VLDB), page 16–27
19 Shin, J., Mahmood, A., and Aref, W. (2019). An investigation of grid-enabled tree indexes for spatial query processing. In Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pages 169–178
20 Shohdy, S., Su, Y., and Agrawal, G. (2015). Load balancing and accelerating parallel spatial join operations using bitmap indexing. In Proc of the IEEE 22nd International Conference on High Performance Computing (HiPC), pages 396–405
21 Siqueira, T. L. L., de Aguiar Ciferri, C. D., Times, V. C., and Ciferri, R. R. (2012). The SB-index and the HSB-index: efficient indices for spatial data warehouses. Geoinformatica, 16(1):165–205
22 Tsitsigkos, D., Bouros, P., Mamoulis, N., and Terrovitis, M. (2019). Parallel in-memory evaluation of spatial joins. In Proc. of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pages 516–519
23 Vo, H., Aji, A., and Wang, F. (2014). SATO: A spatial data partitioning framework for scalable query processing. In Proc. of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, page 545–548
24 Wang, J., Lin, Y. C., and S., S. (2017). An experimental study of bitmap compression vs. inverted list compression. In Proceedings of the 2017 ACM SIGMOD International Conference on Management of Data, New York, NY
25 Yu, J., Wu, J., and Sarwat, M. (2015). Geospark: A cluster computing framework for processing large-scale spatial data. In Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, New York, NY, USA. Association for Computing Machinery