1 |
Baccigalupo, C., Plaza, E., and Donaldson, J. (2008). Uncovering affinity of artists to multiple genres from social behaviour data. In ISMIR, pages 275–280.
|
|
2 |
Barbosa, G., Melo, B., Oliveira, G., Silva, M., Seufitelli, D., and Moro, M. (2021). Hot streaks in the brazilian music market: A comparison between physical and digital eras. In SBCM, pages 152–159. SBC. doi:10.5753/sbcm.2021.19440.
|
|
3 |
Bertin-Mahieux, T. et al. (2011). The Million Song Dataset. In Proc. of Int’l Society for Music Information Retrieval Conf. (ISMIR), pages 591–596.
|
|
4 |
Bertoni, A. and Lemos, R. (2021). Três datasets criados a partir de um banco de canções populares brasileiras de sucesso e não-sucesso de 2014 a 2019. In Anais do III Dataset Showcase Workshop, pages 11–20. SBC. doi:10.5753/dsw.2021.17410.
|
|
5 |
Bryan, N. J. and Wang, G. (2011). Musical influence network analysis and rank of sample-based music. In ISMIR, pages 329–334, Miami, USA.
|
|
6 |
Corrêa, D. C. and Rodrigues, F. A. (2016). A survey on symbolic data-based music genre classification. Expert Syst. Appl., 60:190–210. doi:10.1016/j.eswa.2016.04.008.
|
|
7 |
Cosimato, A., Prisco, R. D., Guarino, A., Malandrino, D., Lettieri, N., Sorrentino, G., and Zaccagnino, R. (2019). The conundrum of success in music: Playing it or talking about it? IEEE Access, 7:123289–123298. doi:10.1109/ACCESS.2019.2937743.
|
|
8 |
Karydis, I., Gkiokas, A., and Katsouros, V. (2016). Musical track popularity mining dataset. In IFIP AIAI, pages 562–572. doi:10.1007/978-3-319-44944-9_50.
|
|
9 |
Oliveira, G. P. (2021). Analyses of musical success based on time, genre and collaboration. Master’s thesis, Universidade Federal de Minas Gerais, Brazil.
|
|
10 |
Oliveira, G. P., Barbosa, G. R. G., Melo, B. C., Botelho, J. E., Silva, M. O., Seufitelli, D. B., and Moro, M. M. (2022). Musical Success in the United States and Brazil: Novel Datasets and Temporal Analyses. Journal of Information and Data Management, 13(1). doi:10.5753/jidm.2022.2350.
|
|
11 |
Oliveira, G. P., Barbosa, G. R. G., Melo, B. C., Silva, M. O., Seufitelli, D. B., and Moro, M. M. (2021). MUHSIC: An Open Dataset with Temporal Music Success Information. In SBBD DSW, pages 65–76, Rio de Janeiro, Brazil. doi:10.5753/dsw.2021.17415.
|
|
12 |
Oliveira, G. P. and Moro, M. M. (2023). Exceptional collaboration patterns in music genre networks. In BraSNAM, pages 91–102. SBC. doi:10.5753/brasnam.2023.230516.
|
|
13 |
Oliveira, G. P., Silva, M. O., Seufitelli, D. B., Lacerda, A., and Moro, M. M. (2020). Detecting collaboration profiles in success-based music genre networks. In ISMIR, Montreal, Canada.
|
|
14 |
Pachet, F. (2011). Hit song science. In Tao Li, Mitsunori Ogihara, G. T., editor, Music Data Mining, chapter 10, pages 305–326. CRC Press, New York, NY, USA.
|
|
15 |
Seufitelli, D. B., Oliveira, G. P., Silva, M. O., Barbosa, G. R., Melo, B. C., Botelho, J. E., de Melo-Gomes, L., and Moro, M. M. (2022). From Compact Discs to Streaming: A Comparison of Eras within the Brazilian Market. Revista Vórtex, 10(1). doi:10.33871/23179937.2022.10.1.2.
|
|
16 |
Seufitelli, D. B., Oliveira, G. P., Silva, M. O., and Moro, M. M. (2023). MGD+: An Enhanced Music Genre Dataset with Success-based Networks. Zenodo. doi:10.5281/zenodo.8086642.
|
|
17 |
Silva, A. C. M., Silva, D. F., and Marcacini, R. M. (2020). 4MuLA: A Multitask, Multimodal, and Multilingual Dataset of Music Lyrics and Audio Features. In WebMedia, page 145–148. ACM. doi:10.1145/3428658.3431089.
|
|
18 |
Silva, M. O., Oliveira, G. P., Seufitelli, D. B., and Moro, M. M. (2023). Collaboration-aware hit song prediction. Journal on Interactive Systems, 14(1):201–214. doi:10.5753/jis.2023.3137.
|
|
19 |
Silva, M. O., Rocha, L. M., and Moro, M. M. (2019a). Collaboration profiles
and their impact on musical success. In ACM SIGAPP, page 2070–2077. ACM. doi:10.1145/3297280.3297483.
|
|
20 |
Silva, M. O., Rocha, L. M., and Moro, M. M. (2019b). MusicOSet: An Enhanced Open Dataset for Music Data Mining. In SBBD DSW, pages 408–417. SBC.
|
|
21 |
Zangerle, E., Huber, R., and Yang, M. V. Y.-H. (2019). Hit Song Prediction: Leveraging Low- and High-Level Audio Features. In ISMIR, pages 319–326.
|
|