1 |
Andrades, R. and Recamonde-Mendoza, M. (2022). Machine learning methods for pre-
diction of cancer driver genes: a survey paper. Briefings in Bioinformatics, 23(3).
bbac062.
|
|
2 |
Huang, J. K., Carlin, D. E., Yu, M. K., Zhang, W., Kreisberg, J. F., Tamayo, P., and Ideker,
T. (2018). Systematic evaluation of molecular networks for discovery of disease genes.
Cell Systems, 6(4):484–495.
|
|
3 |
Jung, S., Wang, S., and Lee, D. (2024). CancerGATE: Prediction of cancer-driver genes
using graph attention autoencoders. Computers in Biology and Medicine, 176:108568.
|
|
4 |
Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Doll´ar, P. (2017). Focal loss for dense
object detection. In Proceedings of the IEEE International Conference on Computer
Vision, pages 2980–2988.
|
|
5 |
Ostroverkhova, D., Przytycka, T. M., and Panchenko, A. R. (2023). Cancer driver muta-
tions: predictions and reality. Trends in Molecular Medicine, 29(7):554–566.
|
|
6 |
Peng, W., Wu, R., Dai, W., and Yu, N. (2023). Identifying cancer driver genes based on
multi-view heterogeneous graph convolutional network and self-attention mechanism.
BMC Bioinformatics, 24(1):16.
|
|
7 |
Pratt, D., Chen, J., Pillich, R., Rynkov, V., Gary, A., Demchak, B., and Ideker, T.
(2017). Ndex 2.0: a clearinghouse for research on cancer pathways. Cancer Research,
77(21):e58–e61.
|
|
8 |
Rogers, M. F., Gaunt, T. R., and Campbell, C. (2020). Prediction of driver variants in
the cancer genome via machine learning methodologies. Briefings in Bioinformatics,
22(4). bbaa250.
|
|
9 |
Schulte-Sasse, R., Budach, S., Hnisz, D., and Marsico, A. (2021). Integration of multi-
omics data with graph convolutional networks to identify new cancer genes and their
associated molecular mechanisms. Nature Machine Intelligence, 3(6):513–526.
|
|
10 |
Song, H., Yin, C., Li, Z., Feng, K., Cao, Y., Gu, Y., and Sun, H. (2023). Identification
of cancer driver genes by integrating multiomics data with graph neural networks.
Metabolites, 13(3):339.
|
|
11 |
Wang, L., Zhou, J., Wang, X., Wang, Y., and Li, J. (2024). MCDHGN: heterogeneous
network-based cancer driver gene prediction and interpretability analysis. Bioinfor-
matics, 40(6):btae362.
|
|
12 |
WHO, W. H. O. (2024). Global cancer burden growing, amidst mounting need for ser-
vices. https://shorturl.at/8AUlY [Accessed: May 2025].
|
|
13 |
Zhang, H., Lin, C., Chen, Y., Shen, X., Wang, R., Chen, Y., and Lyu, J. (2025). Enhanc-
ing molecular network-based cancer driver gene prediction using machine learning
approaches: Current challenges and opportunities. Journal of Cellular and Molecular
Medicine, 29(1):e70351.
|
|
14 |
Zhang, X.-M., Liang, L., Liu, L., and Tang, M.-J. (2021). Graph neural networks and
their current applications in bioinformatics. Frontiers in Genetics, 12.
|
|