SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Tulio Vidal Rolim(tulio.vidal@ifpi.edu.br)
2 José Renato Freitas(jrenatosfreitas@gmail.com)
3 Vânia Vidal(vvidal@lia.ufc.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Feuer, B., Liu, Y., Hegde, C., and Freire, J. (2023). Archetype: A novel framework for open-source column type annotation using large language models. arXiv preprint arXiv:2310.18208.
2 Galkin, M., Auer, S., Vidal, M.-E., and Scerri, S. (2017). Enterprise knowledge graphs: A semantic approach for knowledge management in the next generation of enterprise information systems. In International Conference on Enterprise Information Systems, volume 2, pages 88–98. SCITEPRESS.
3 He, J., Treude, C., and Lo, D. (2024). Llm-based multi-agent systems for software engineering: Literature review, vision and the road ahead. Proceedings of the ACM (forthcoming). Preprint available via arXiv.
4 Kayali, M., Lykov, A., Fountalis, I., Vasiloglou, N., Olteanu, D., and Suciu, D. (2023). Chorus: foundation models for unified data discovery and exploration. arXiv preprint arXiv:2306.09610.
5 Laurenzi, E., Mathys, A., and Martin, A. (2024). An llm-aided enterprise knowledge graph (ekg) engineering process. In AAAI Spring Symposium Series (SSS-24). Association for the Advancement of Artificial Intelligence.
6 Liu, Y., Pena, E., Santos, A., Wu, E., and Freire, J. (2024). Magneto: Combining small and large language models for schema matching. arXiv preprint arXiv:2412.08194.
7 Nuzzolese, A. G. (2025). Streamlining knowledge graph creation with pyrml. arXiv preprint arXiv:2505.20949.
8 Santos, A., Pena, E. H., Lopez, R., and Freire, J. (2025). Interactive data harmonization with llm agents. arXiv preprint arXiv:2502.07132.
9 Tu, J., Fan, J., Tang, N., Wang, P., Li, G., Du, X., Jia, X., and Gao, S. (2023). Unicorn: A unified multi-tasking model for supporting matching tasks in data integration. Proceedings of the ACM on Management of Data, 1(1):1–26.
10 Vidal, V., Freitas, R., Arruda, N., Casanova, M. A., and Renso, C. (2024). A data design pattern for building and exploring semantic views of enterprise knowledge graphs. In Anais do XXXIX Simp´osio Brasileiro de Bancos de Dados, pages 1–13, Porto Alegre, RS, Brasil. SBC.
11 Xiao, G., Lanti, D., Kontchakov, R., Komla-Ebri, S., G¨uzel-Kalaycı, E., Ding, L., Corman, J., Cogrel, B., Calvanese, D., and Botoeva, E. (2020). The virtual knowledge graph system ontop. In International Semantic Web Conference, pages 259–277. Springer.
12 Zhu, Y., Wang, X., Chen, J., Qiao, S., Ou, Y., Yao, Y., Deng, S., Chen, H., and Zhang, N. (2024). Llms for knowledge graph construction and reasoning: Recent capabilities and future opportunities. arXiv preprint arXiv:2305.13168.