SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Daniel de Oliveira(danielcmo@ic.uff.br)
2 Luiz Gustavo Dias(lgdias@id.uff.br)
3 Bruno Lopes(bruno@ic.uff.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 [Babalou and K ̈onig-Ries 2020] Babalou, S. and K ̈onig-Ries, B. (2020). Towards Multiple Ontology Merging with CoMerger. In Proc. of the ISWC 2020, pages 59–64.
2 [Baranowski et al. 2012] Baranowski, M. et al. (2012). Constructing workflows from script applications. Sci. Program., 20(4):359–377.
3 [Barba et al. 2021] Barba, L. A. et al. (2021). Scientific computing with python on high-performance heterogeneous systems. Comput. Sci. Eng., 23(4):5–7.
4 [Carvalho et al. 2017] Carvalho, L. A. M. C. et al. (2017). NiW: Converting Notebooks into Workflows to Capture Dataflow and Provenance. In Proc. of the K-CAP, pages 12–16.
5 [Crist 2016] Crist, J. (2016). Dask & Numba: Simple libraries for optimizing scientific python code. In IEEE BigData 2016, pages 2342–2343.
6 [De Bruijn et al. 2005] De Bruijn, J., Bussler, C., Domingue, J., Fensel, D., Hepp, M., Kifer, M., K ̈onig-Ries, B., Kopecky, J., Lara, R., Oren, E., et al. (2005). Web service modeling ontology (wsmo). Interface, 5(1):50.
7 [Deelman et al. 2005] Deelman, E. et al. (2005). Pegasus: A framework for mapping complex scientific workflows onto distributed systems. Scientific Programming, 13(3):219–237.
8 [Dias et al. 2020a] Dias, L., Lopes, B., and de Oliveira, D. (2020a). Ontoexpline: Rumo a uma ontologia para representação de linhas de experimento algébricas. In Anais do XIV Brazilian e-Science Workshop, pages 33–40, Porto Alegre, RS, Brasil. SBC.
9 [Dias et al. 2019] Dias, L. G., Lopes, B., and de Oliveira, D. (2019). Aplicação de ontologias de proveniência em workflows científicos: um mapeamento sistemático. In Anais do XIII Brazilian e-Science Workshop, Porto Alegre, RS, Brasil. SBC.
10 [Dias et al. 2020b] Dias, L. G., Mattoso, M., Lopes, B., and de Oliveira, D. (2020b). Experiencing dfanalyzer for runtime analysis of phylogenomic dataflows. In Anais do XIII Simpósio Brasileiro de Bioinformática, pages 105–116, Porto Alegre, RS, Brasil. SBC.
11 [Filgueira et al. 2020] Filgueira, R. et al. (2020). Dispel4py: An open-source python library for data-intensive seismology. In EGU General Assembly Conf., page 6790.
12 [Freire et al. 2008] Freire, J., Koop, D., Santos, E., and Silva, C. T. (2008). Provenance for computational tasks: A survey. Comput. Sci. Eng., 10(3):11–21.
13 [Gannon et al. 2007] Gannon, D. et al. (2007). In Workflows for e-Science, Scientific Workflows for Grids, pages 1–8. Springer.
14 [Gil 2013] Gil, Y. (2013). Mapping semantic workflows to alternative workflow execution engines. In 2013 IEEE ICSC, pages 377–382. IEEE Computer Society.
15 [Gil et al. 2007] Gil, Y. et al. (2007). On the black art of designing computational workflows. In Proc.s of the WORKS, page 53–62, New York, NY, USA.
16 [Gil et al. 2010] Gil, Y., Ratnakar, V., and Fritz, C. (2010). Assisting scientists with complex data analysis tasks through semantic workflows. In AAAI Fall Symposium. AAAI.
17 [Guarino 1997] Guarino, N. (1997). Understanding, building and using ontologies. Int. J. Human-Computer Studies, 46(2-3):293–310.
18 [Lamprecht et al. 2021] Lamprecht, A. et al. (2021). Perspectives on automated composition of workflows in the life sciences. F1000Research, 10:897.
19 [Marinho et al. 2017] Marinho, A. et al. (2017). Deriving scientific workflows from algebraic experiment lines: A practical approach. FGCS, 68:111–127.
20 [Martin et al. 2004] Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., Narayanan, S., Paolucci, M., Parsia, B., Payne, T., et al. (2004). Owl-s: Semantic markup for web services. W3C member submission, 22(4).
21 [Patil et al. 2004] Patil, A. A., Oundhakar, S. A., Sheth, A. P., and Verma, K. (2004). Meteor-s web service annotation framework. In Proceedings of the 13th international conference on World Wide Web, pages 553–562.
22 [Ristov et al. 2021] Ristov, S. et al. (2021). AFCL: An abstract function choreography language for serverless workflow specification. FGCS, 114:368–382.
23 [Silva et al. 2020] Silva, V. et al. (2020). Dfanalyzer: Runtime dataflow analysis tool for computational science and engineering applications. SoftwareX, 12:100592.
24 [Wang and Peng 2019] Wang, G. and Peng, B. (2019). Script of scripts: A pragmatic workflow system for daily computational research. PLoS Comput. Biol., 15(2).
25 [Weibel and Koch 2000] Weibel, S. L. and Koch, T. (2000). The dublin core metadata initiative. D-lib magazine, 6(12):1082–9873.