1 |
Alon, U. and Yahav, E. (2020). On the bottleneck of graph neural networks and its prac-tical implications.arXiv preprint arXiv:2006.05205.
|
|
2 |
Barros, C. D., Mendonc ̧a, M. R., Vieira, A. B., and Ziviani, A. (2021). A survey on embedding dynamic graphs.arXiv preprint arXiv:2101.01229
|
|
3 |
Bojchevski, A., Klicpera, J., Perozzi, B., Kapoor, A., Blais, M., R ́ozemberczki, B.,Lukasik, M., and G ̈unnemann, S. (2020). Scaling graph neural networks with approx-imate pagerank. InProceedings of the 26th ACM SIGKDD International Conferenceon Knowledge Discovery & Data Mining, pages 2464–2473
|
|
4 |
Cai, H., Zheng, V. W., and Chang, K. C.-C. (2018). A comprehensive survey of graphembedding: Problems, techniques, and applications.IEEE Transactions on Knowledgeand Data Engineering, 30(9):1616–1637
|
|
5 |
Goodfellow, I., Bengio, Y., and Courville, A. (2016).Deep Learning. MIT Press
|
|
6 |
Hamilton, W. L. (2020). Graph representation learning.Synthesis Lectures on ArtificialIntelligence and Machine Learning, 14(3):1–159.
|
|
7 |
Mohri, M., Rostamizadeh, A., and Talwalkar, A. (2018).Foundations of Machine Learn-ing. MIT Press.
|
|
8 |
Nickel, M., Murphy, K., Tresp, V., and Gabrilovich, E. (2015). A review of relationalmachine learning for knowledge graphs.Proceedings of the IEEE, 104(1):11–33.
|
|
9 |
Zhang, D., Huang, X., Liu, Z., Zhou, J., Hu, Z., Song, X., Ge, Z., Wang, L., Zhang,Z., and Qi, Y. (2020). Agl: A scalable system for industrial-purpose graph machinelearning.Proc. VLDB Endow., 13(12):3125–3137
|
|