1 |
Arkhangelsky, D. and Imbens, G. Causal models for longitudinal and panel data: a survey. The Econometrics Journal 27 (3): C1–C61, 06, 2024.
|
|
2 |
Balkus, S. and Hejazi, N. Causaltables.jl: Simulating and storing data for statistical causal inference in julia. Journal of Open Source Software vol. 10, pp. 7580, 02, 2025.
|
|
3 |
Box, G. E. and Jenkins, G. M. Time Series Analysis: Forecasting and Control. Holden-Day series in time series analysis and digital processing. Holden-Day, 1970.
|
|
4 |
Bun, M., Gaboardi, M., Neunhoeffer, M., and Zhang, W. Continual release of differentially private synthetic data from longitudinal data collections. Proc. ACM Manag. Data 2 (2), 2024.
|
|
5 |
Cheng, L., Guo, R., Moraffah, R., Sheth, P., Candan, K. S., and Liu, H. Evaluation methods and measures for causal algorithms. IEEE Transactions on Artificial Intelligence vol. 3, pp. 924–943, 2022.
|
|
6 |
Cho, K., van Merrienboer, B., Bahdanau, D., and Bengio, Y. On the properties of neural machine translation: Encoder–decoder approaches. In Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, 2014.
|
|
7 |
Diggle, P. J., Heagerty, P. J., Liang, K.-Y., and Zeger, S. L. Analysis of Longitudinal Data. Oxford University Press, Oxford, UK, 2002.
|
|
8 |
Elman, J. L. Finding structure in time. Cognitive Science 14 (2): 179–211, 1990.
|
|
9 |
Enders, W. Applied Econometric Time Series. John Wiley & Sons, Hoboken, New Jersey, 2010.
|
|
10 |
Hochreiter, S. and Schmidhuber, J. Long short-term memory. Neural Computation 9 (8): 1735–1780, 11, 1997.
|
|
11 |
Kaddour, J., Lynch, A., Liu, Q., Kusner, M. J., and Silva, R. Causal machine learning: A survey and open problems, 2022.
|
|
12 |
Kühnel, L., Schneider, J., Perrar, I., Adams, T., Moazemi, S., Prasser, F., Nöthlings, U., Fröhlich, H., and Fluck, J. Synthetic data generation for a longitudinal cohort study–evaluation, method extension and reproduction of published data analysis results. Scientific Reports 14 (1): 14412, 2024.
|
|
13 |
Lütkepohl, H. New Introduction to Multiple Time Series Analysis. Springer Science & Business Media, 2005.
|
|
14 |
Melnychuk, V., Frauen, D., and Feuerriegel, S. Causal transformer for estimating counterfactual outcomes. In Proceedings of the 39th International Conference on Machine Learning (ICML), 2022.
|
|
15 |
Mendis, K., Wickramasinghe, M., and Marasinghe, P. Multivariate time series forecasting: A review. In Proce-edings of the 2024 2nd Asia Conference on Computer Vision, Image Processing and Pattern Recognition. pp. 1–9, 2024.
|
|
16 |
Pearl, J. Causality: Models, Reasoning, and Inference. Cambridge University Press, 2000.
|
|
17 |
Pearl, J. The Book of Why: The New Science of Cause and Effect. Basic Books, New York, 2018.
|
|
18 |
Rubin, D. B. Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology 66 (5): 688–701, 1974.
|
|
19 |
Sutskever, I., Vinyals, O., and Le, Q. V. Sequence to sequence learning with neural networks. In Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2. NIPS’14. MIT Press, Cambridge, MA, USA, pp. 3104–3112, 2014.
|
|
20 |
Wright, S. Correlation and causation. Journal of Agricultural Research 20 (7): 557–585, 1921.
|
|