1 |
Alexandrino, F., Parracho, R., Carvalho, D., and Ogasawara, E. (2025). Code and Data Repository for LLM on LFD. https://github.com/cefet-rj-dal/tsfm.
|
|
2 |
Ansari, A. F., Stella, L., Turkmen, C., Zhang, X., Mercado, P., Shen, H., Shchur,
O., Rangapuram, S. S., Arango, S. P., Kapoor, S., Zschiegner, J., Maddix, D. C., Wang, H., Mahoney, M. W., Torkkola, K., Wilson, A. G., Bohlke-Schneider, M., and Wang, Y. (2024). Chronos: Learning the Language of Time Series. http://arxiv.org/abs/2403.07815.
|
|
3 |
Bahelka, A. and de Weerd, H. (2024). Comparative analysis of Mixed-Data Sampling (MIDAS) model compared to Lag-Llama model for inflation nowcasting. http://arxiv.org/abs/2407.08510.
|
|
4 |
Bao, W., Cao, Y., Yang, Y., Che, H., Huang, J., and Wen, S. (2025). Data-driven stock forecasting models based on neural networks: A review. Information Fusion, 113:102616.
|
|
5 |
Benidis, K., Rangapuram, S. S., Flunkert, V., Wang, Y., Maddix, D., Turkmen, C., Gasthaus, J., Bohlke-Schneider, M., Salinas, D., Stella, L., Aubet, F.-X., Callot, L., and Januschowski, T. (2022). Deep Learning for Time Series Forecasting: Tutorial and Literature Survey. ACM Comput. Surv., 55(6).
|
|
6 |
Box, G. E. P., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M. (2015). Time Series Analysis: Forecasting and Control. John Wiley & Sons.
|
|
7 |
FAO (2025). Food and agriculture data. https://www.fao.org/faostat.
|
|
8 |
Goubeaud, M., Jousen, P., Gmyrek, N., Ghorban, F., and Kummert, A. (2021). White Noise Windows: Data Augmentation for Time Series. In 2021 International Conference on Optimization and Applications, ICOA 2021.
|
|
9 |
Gruver, N., Finzi, M., Qiu, S., and Wilson, A. G. (2023). Large Language Models Are Zero-Shot Time Series Forecasters. In Advances in Neural Information Processing Systems, volume 36.
|
|
10 |
Gupta, D., Bhatti, A., and Parmar, S. (2024a). Beyond LoRA: Exploring Efficient Fine-Tuning Techniques for Time Series Foundational Models. http://arxiv.org/abs/2409.11302.
|
|
11 |
Gupta, D., Bhatti, A., Parmar, S., Dan, C., Liu, Y., Shen, B., and Lee, S. (2024b). LowRank Adaptation of Time Series Foundational Models for Out-of-Domain Modality Forecasting. http://arxiv.org/abs/2405.10216.
|
|
12 |
Han, J., Pei, J., and Tong, H. (2022). Data Mining: Concepts and Techniques. Morgan Kaufmann, Cambridge, MA, 4th edition edition.
|
|
13 |
He, K., Yu, L., and Zou, Y. (2024). Crude oil future price forecasting using pretrained transformer model. Procedia Computer Science, 242:288–293.
|
|
14 |
Hyndman, R. J. and Athanasopoulos, G. (2018). Forecasting: principles and practice. OTexts.
|
|
15 |
Iglesias, G., Talavera, E., González-Prieto, Á., Mozo, A., and Gómez-Canaval, S. (2023). Data Augmentation techniques in time series domain: a survey and taxonomy. Neural Computing and Applications, 35(14):10123 – 10145.
|
|
16 |
Liao, W., Yang, Z., Jia, M., Rehtanz, C., Fang, J., and Porté-Agel, F. (2024). Zero-Shot Load Forecasting with Large Language Models. http://arxiv.org/abs/2411.11350.
|
|
17 |
Lin, N., Yun, D., Xia, W., Palensky, P., and Vergara, P. P. (2024). Comparative Analysis of Zero-Shot Capability of Time-Series Foundation Models in Short-Term Load Prediction. http://arxiv.org/abs/2412.12834.
|
|
18 |
Maior, C. S. and Silva, T. (2024). Time-series failure prediction on small datasets using machine learning. IEEE Latin America Transactions, 22(5):362 – 371.
|
|
19 |
Masini, R. P., Medeiros, M. C., and Mendes, E. F. (2021). Machine learning advances for time series forecasting. Journal of Economic Surveys, 37(1):76 –– 111.
|
|
20 |
McKay, A. and Wolf, C. K. (2023). What can time-series regressions tell us about policy counterfactuals? Econometrica, 91(5):1695–1725.
|
|
21 |
Mello, A., Giusti, L., Tavares, T., Alexandrino, F., Guedes, G., Soares, J., Barbastefano,
R., Porto, F., Carvalho, D., and Ogasawara, E. (2024). D-AI2-M: Ethanol Production Forecasting in Brazil Using Data-Centric Artificial Intelligence Methodology. IEEE Latin America Transactions, 22(11):899–910.
|
|
22 |
Ogasawara, E., Castro, A., Borges, H., Carvalho, D., Santos, J., Bezerra, E., and Coutinho, R. (2023). daltoolbox: Leveraging Experiment Lines to Data Analytics. https://cran.rproject.org/web/packages/daltoolbox/index.html.
|
|
23 |
Ogasawara, E., Salles, R., Porto, F., and Pacitti, E. (2025). Event Detection in Time Series. Springer, Switzerland.
|
|
24 |
Pacheco, C., Guimaraes, M., Bezerra, E., Lobosco, D., Soares, J., González, P. H., Andrade, A., De Souza, C. G., and Ogasawara, E. (2022). Exploring Data Preprocessing and Machine Learning Methods for Forecasting Worldwide Fertilizers Consumption. In Proceedings of the International Joint Conference on Neural Networks, volume 2022-July.
|
|
25 |
Petropoulos, F. (2022). Forecasting: theory and practice. International Journal of Forecasting, 38(3):705–871.
|
|
26 |
Rasul, K., Ashok, A., Williams, A. R., Ghonia, H., Bhagwatkar, R., Khorasani, A., Bayazi, M. J. D., Adamopoulos, G., Riachi, R., Hassen, N., Biloš, M., Garg, S., Schneider, A., Chapados, N., Drouin, A., Zantedeschi, V., Nevmyvaka, Y., and Rish, I. (2024). Lag-Llama: Towards Foundation Models for Probabilistic Time Series Forecasting. http://arxiv.org/abs/2310.08278.
|
|
27 |
Salles, R., Assis, L., Guedes, G., Bezerra, E., Porto, F., and Ogasawara, E. (2017). A framework for benchmarking machine learning methods using linear models for univariate time series prediction. In Proceedings of the International Joint Conference on Neural Networks, volume 2017-May, pages 2338 – 2345.
|
|
28 |
Salles, R., Belloze, K., Porto, F., Gonzalez, P. H., and Ogasawara, E. (2019). Nonstationary time series transformation methods: An experimental review. Knowledge-Based Systems, 164:274 – 291.
|
|
29 |
Salles, R., Pacitti, E., Bezerra, E., Marques, C., Pacheco, C., Oliveira, C., Porto, F., and Ogasawara, E. (2023). TSPredIT: Integrated Tuning of Data Preprocessing and Time Series Prediction Models. Lecture Notes in Computer Science, 14160 LNCS:41 – 55.
|
|
30 |
Saravanan, H. K., Dwivedi, S., Praveen, P., and Arjunan, P. (2024). Analyzing the Performance of Time Series Foundation Models for Short-term Load Forecasting. In Proceedings of the 2024 11th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, BuildSys ’24, pages 346 – 349, New York, NY, USA. Association for Computing Machinery.
|
|
31 |
Semenoglou, A.-A., Spiliotis, E., and Assimakopoulos, V. (2023). Data augmentation for univariate time series forecasting with neural networks. Pattern Recognition, 134.
|
|