1 |
Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer, L. (2023). QLoRA: Efficient Finetuning of Quantized LLMs. In Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023.
|
|
2 |
Dong, X., Zhang, C., Ge, Y., Mao, Y., Gao, Y., Chen, L., Lin, J., and Lou, D. (2023). C3: Zero-shot Text-to-SQL with ChatGPT. ArXiv, abs/2307.07306.
|
|
3 |
Gao, D., Wang, H., Li, Y., Sun, X., Qian, Y., Ding, B., and Zhou, J. (2024). Text-to-SQL Empowered by Large Language Models: A Benchmark Evaluation. Proc. VLDB Endow.
|
|
4 |
Hong, Z., Yuan, Z., Zhang, Q., Chen, H., Dong, J., Huang, F., and Huang, X. (2024). Next-Generation Database Interfaces: A Survey of LLM-based Text-to-SQL. ArXiv, abs/2406.08426.
|
|
5 |
Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., and Chen, W. (2022). LoRA: Low-Rank Adaptation of Large Language Models. In The Tenth International Conference on Learning Representations, ICLR 2022.
|
|
6 |
José, M. and Cozman, F. (2021). mRAT-SQL+GAP: A Portuguese Text-to-SQL Transformer. In Anais da X Brazilian Conference on Intelligent Systems, BRACIS 2021.
|
|
7 |
Li, H., Zhang, J., Liu, H., Fan, J., Zhang, X., Zhu, J., Wei, R., Pan, H., Li, C., and Chen, H. (2024a). CodeS: Towards Building Open-source Language Models for Text-to-SQL. Proc. ACM Manag. Data.
|
|
8 |
Li, Z., Wang, X., Zhao, J., Yang, S., Du, G., Hu, X., Zhang, B., Ye, Y.,
Li, Z., Zhao, R., and Mao, H. (2024b). PET-SQL: A Prompt-Enhanced Two-Round
Refinement of Text-to-SQL with Cross-consistency. ArXiv, abs/2403.09732.
|
|
9 |
Liu, X., Shen, S., Li, B., Ma, P., Jiang, R., Zhang, Y., Fan, J., Li, G., Tang, N., and Luo, Y. (2024). A Survey of NL2SQL with Large Language Models: Where are we, and where are we going? ArXiv, abs/2408.05109.
|
|
10 |
Miranda, B. and Campelo, C. E. C. (2024). How effective is
an LLM-based Data Analysis Automation Tool? A Case Study with ChatGPT’s Data
Analyst. In Anais do XXXIX Simpósio Brasileiro de Bancos de Dados, SBBD 2024.
|
|
11 |
Mohammadjafari, A., Maida, A. S., and Gottumukkala, R.
(2024). From Natural Language to SQL: Review of LLM-based Text-to-SQL Systems.
ArXiv, abs/2410.01066.
|
|
12 |
Oliveira, A., Nascimento, E., Pinheiro, J. a., Avila, C. V. S., Coelho,
G., Feijó, L., Izquierdo, Y., García, G., Leme, L. A. P. P., Lemos, M., and Casanova,
M. A. (2024). Small, Medium, and Large Language Models for Text-to-SQL. In
Conceptual Modeling: 43rd International Conference, ER 2024.
|
|
13 |
Pourreza, M. and Rafiei, D. (2024). DTS-SQL: Decomposed
Text-to-SQL with Small Large Language Models. In Proceedings of the Findings of
the Association for Computational Linguistics: EMNLP 2024.
|
|
14 |
Volvovsky, S., Marcassa, M., and Panbiharwala, M. (2024). DFIN-
SQL: Integrating Focused Schema with DIN-SQL for Superior Accuracy in Large-
Scale Databases. ArXiv, abs/2403.00872.
|
|
15 |
Wang, B., Ren, C., Yang, J., Liang, X., Bai, J., Chai, L., Yan, Z., Zhang,
Q., Yin, D., Sun, X., and Li, Z. (2025). MAC-SQL: A Multi-Agent Collaborative
Framework for Text-to-SQL. In Proceedings of the 31st International Conference on
Computational Linguistics, COLING 2025.
|
|
16 |
Xu, L., Xie, H., Qin, S.-Z. J., Tao, X., and Wang, F. L. (2023). Parameter-
Efficient Fine-Tuning Methods for Pretrained Language Models: A Critical Review
and Assessment. ArXiv, abs/2312.12148.
|
|
17 |
Yang, S., Su, Q., Li, Z., Li, Z., Mao, H., Liu, C., and Zhao, R. (2024).
SQL-to-Schema Enhances Schema Linking in Text-to-SQL. In Database and Expert
Systems Applications - 35th International Conference, DEXA 2024.
|
|
18 |
Yu, T., Zhang, R., Yang, K., Yasunaga, M., Wang, D., Li, Z., Ma, J., Li,
I., Yao, Q., Roman, S., Zhang, Z., and Radev, D. (2018). Spider: A Large-Scale
Human-Labeled Dataset for Complex and Cross-Domain Semantic Parsing and Text-
to-SQL Task. In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, EMLP 2018.
|
|
19 |
Zhang, T., Chen, C., Liao, C., Wang, J., Zhao, X., Yu, H., Wang, J.,
Li, J., and Shi, W. (2024). SQLfuse: Enhancing Text-to-SQL Performance through
Comprehensive LLM Synergy. ArXiv, abs/2407.14568.
|
|
20 |
Zhong, R., Yu, T., and Klein, D. (2020). Semantic Evaluation for Text-
to-SQL with Distilled Test Suites. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2020.
|
|