SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Julio Reis(jreis@ufv.br)
2 Giovanni Comarella(gc@inf.ufes.b)
3 Fabiano Belém(fmuniz@dcc.ufmg.br)
4 Rodrigo Lima(rodrigo.otavio@ufv.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Burke, R., Sonboli, N., and Ordonez-Gauger, A. (2018). Balanced neighborhoods for multi-sided fairness in recommendation. In Proc. of the Int’l Conference on Fairness, Accountability and Transparency (FAT), pages 202–214.
2 Calders, T. and Verwer, S. (2010). Three naive bayes approaches for discrimination-free classification. Data Mining and Knowledge Discovery, 21(2):277–292.
3 Celma, `O. and Cano, P. (2008). From hits to niches? or how popular artists can bias music recommendation and discovery. In Proc. of the Workshop on Large-Scale Recommender Systems and the Netflix Prize Competition (@KDD), pages 1–8.
4 Desrosiers, C. and Karypis, G. (2011). A comprehensive survey of neighborhood-based recommendation methods. Recommender systems handbook, pages 107–144.
5 Dwork, C., Hardt, M., Pitassi, T., Reingold, O., and Zemel, R. (2012). Fairness through awareness. In Proc. of the Innovations in Theoretical Computer Science Conference, pages 214–226
6 Ekstrand, M. D. and Kluver, D. (2021). Exploring author gender in book rating and recommendation. User Modeling and User-Adapted Interaction, pages 1–44
7 Ekstrand, M. D., Riedl, J. T., Konstan, J. A., et al. (2011). Collaborative filtering recommender systems. Foundations and Trends® in Human–Computer Interaction, 4(2):81–173.
8 Hajian, S., Bonchi, F., and Castillo, C. (2016). Algorithmic bias: From discrimination discovery to fairness-aware data mining. In Proc. of the ACM Int’l Conference on Knowledge Discovery and Data Mining (SIGKDD), pages 2125–2126.
9 Hardt, M., Price, E., and Srebro, N. (2016). Equality of opportunity in supervised learning. arXiv preprint arXiv:1610.02413.
10 Ahmadian, M., Ahmadi, M., and Ahmadian, S. (2022). A reliable deep representation learning to improve trust-aware recommendation systems. Expert Systems with Applications, 197:116697.
11 Baeza-Yates, R., Ribeiro-Neto, B., et al. (1999). Modern information retrieval, volume 463. ACM press New York.
12 Brandão, M. A., Moro, M. M., and Almeida, J. M. (2013). Análise de fatores impactantes na recomendação de colaborações acadêmicas utilizando projeto fatorial. In Simpósio
13 Harper, F. M. and Konstan, J. A. (2016). The movielens datasets: History and context. ACM Transactions on Interactive Intelligent Systems (TIIS), 5(4):19.
14 Kamishima, T., Akaho, S., and Sakuma, J. (2011). Fairness-aware learning through regularization approach. In Proc. of the IEEE International Conference on Data Mining Workshops, pages 643–650.
15 Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980
16 Ko, H., Lee, S., Park, Y., and Choi, A. (2022). A survey of recommendation systems: Recommendation models, techniques, and application fields. Electronics, 11(1):141.
17 Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Computer, 42(8):30–37
18 L. Cardoso, R., Meira Jr., W., Almeida, V., and J. Zaki, M. (2019). A framework for benchmarking discrimination-aware models in machine learning. In Proc. of the Int’l Conference on AI, Ethics, and Society (AIES), page 437–444
19 Rastegarpanah, B., Gummadi, K. P., and Crovella, M. (2019). Fighting fire with fire: Using antidote data to improve polarization and fairness of recommender systems. In Proc.of the ACM Int’l Conference on Web Search and Data Mining (WSDM), pages 231–239.
20 Salakhutdinov, R., Mnih, A., and Hinton, G. (2007). Restricted boltzmann machines for collaborative filtering. In Proc. of the Int’l Conference on Machine learning, pages 791–798
21 Schafer, J. B., Frankowski, D., Herlocker, J., and Sen, S. (2007). Collaborative filtering recommender systems. In The adaptive web, pages 291–324. Springer
22 Yao, S. and Huang, B. (2017). Beyond parity: Fairness objectives for collaborative filtering. In Advances in Neural Information Processing Systems, pages 2921–2930.