SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Gregully Lima(gregullywillian@gmail.com)
2 Fabio Porto (fporto@lncc.br)
3 Eduardo Henrique Monteiro Pena(eduardopena@utfpr.edu.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). Smote: syn- thetic minority over-sampling technique. Journal of artificial intelligence research, 16:321–357.
2 Chung, Y., Kraska, T., Polyzotis, N., Tae, K. H., and Whang, S. E. (2020). Automated data slicing for model validation: A big data - ai integration approach. IEEE Transactions on Knowledge and Data Engineering, 32(12):2284–2296.
3 Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. Lawrence Erlbaum Associates, Hillsdale, NJ, 2nd edition.
4 El Gebaly, K., Agrawal, P., Golab, L., Korn, F., and Srivastava, D. (2014). Interpretable and informative explanations of outcomes. Proceedings of the VLDB Endowment, 8(1):61–72.
5 Foster, D. P. and Stine, R. A. (2008). α-investing: a procedure for sequential control of expected false discoveries. Journal of the Royal Statistical Society Series B: Statistical Methodology, 70(2):429–444.
6 Kamiran, F. and Calders, T. (2012). Data preprocessing techniques for classification with- out discrimination. Knowledge and Information Systems, 33(1):1–33.
7 Kerrigan, D. and Bertini, E. (2023). Slicelens: Guided exploration of machine learn- ing datasets. In Proceedings of the Workshop on Human-In-the-Loop Data Analytics, pages 1–7.
8 Kohavi, R. (1996). Census Income. UCI Machine Learning Repository. DOI: https://doi.org/10.24432/C5GP7S.
9 Lin, Y., Gupta, S., and Jagadish, H. (2024). Mitigating subgroup unfairness in machine learning classifiers: A data-driven approach. In 2024 IEEE 40th International Confer- ence on Data Engineering (ICDE), pages 2151–2163. IEEE.
10 Liu, H. and Motoda, H. (1998). Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic Publishers, USA.
11 Moro, S., Rita, P., and Cortez, P. (2012). Bank Marketing. UCI Machine Learning Repository. DOI: https://doi.org/10.24432/C5K306.
12 Pastor, E., De Alfaro, L., and Baralis, E. (2021). Looking for trouble: Analyzing classifier behavior via pattern divergence. In Proceedings of the 2021 International Conference on Management of Data, pages 1400–1412.
13 Polyzotis, N., Roy, S., Whang, S. E., and Zinkevich, M. (2017). Data management chal- lenges in production machine learning. In Proceedings of the 2017 ACM International Conference on Management of Data, pages 1723–1726.
14 Ribeiro, V., Pena, E. H. M., Saldanha, R., Akbarinia, R., Valduriez, P., Khan, F., Stoy- anovich, J., and Porto, F. (2023). Subset modelling: A domain partitioning strategy for data-efficient machine-learning. In Anais do XXXVIII Simpósio Brasileiro de Bancos de Dados, pages 318–323, Porto Alegre, RS, Brasil. SBC.
15 Sagadeeva, S. and Boehm, M. (2021). Sliceline: Fast, linear-algebra-based slice finding for ml model debugging. In Proceedings of the 2021 International Conference on Management of Data, pages 2290–2299.
16 Sakar, C. and Kastro, Y. (2018). Online Shoppers Purchasing Intention Dataset. UCI Machine Learning Repository. DOI: https://doi.org/10.24432/C5F88Q.
17 Sharma, A., Jain, A., Gupta, P., and Chowdary, V. (2021). Machine learning applications for precision agriculture: A comprehensive review. IEEE Access, 9:4843–4873.
18 Shehab, M., Abualigah, L., Shambour, Q., Abu-Hashem, M. A., Shambour, M. K. Y., Al- salibi, A. I., and Gandomi, A. H. (2022). Machine learning in medical applications: A review of state-of-the-art methods. Computers in Biology and Medicine, 145:105458.
19 Yang, L. and Shami, A. (2020). On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing, 415:295–316.
20 Zhang, X., Ono, J. P., Song, H., Gou, L., Ma, K.-L., and Ren, L. (2023). Sliceteller: A data slice-driven approach for machine learning model validation. IEEE Transactions on Visualization and Computer Graphics, 29(1):842–852.