1 |
De Bie, T., De Raedt, L., Hernández-Orallo, J., Hoos, H. H., Smyth, P., and Williams, C. K. (2022). Automating data science. Communications of the ACM, 65(3):76–87. ACM New York, NY, USA.
|
|
2 |
Gil, Y., Honaker, J., Gupta, S., Ma, Y., D’Orazio, V., Garijo, D., Gadewar, S., Yang, Q., and Jahanshad, N. (2019). Towards human-guided machine learning. In Proceedings of the 24th International Conference on Intelligent User Interfaces, pages 614–624.
|
|
3 |
Kumar, A., McCann, R., Naughton, J., and Patel, J. M. (2016). Model selection management systems: The next frontier of advanced analytics. ACM SIGMOD Record, 44(4):17–22. ACM New York, NY, USA.
|
|
4 |
LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553):436–444. Publisher: Nature Publishing Group UK London.
|
|
5 |
Lee, D. and Macke, S. (2020). A Human-in-the-loop Perspective on AutoML: Milestones and the Road Ahead. IEEE Data Engineering Bulletin. National Science Foundation. NSF-PAR ID: 10161752.
|
|
6 |
Pang, B., Nijkamp, E., and Wu, Y. N. (2020). Deep learning with tensorflow: A review. Journal of Educational and Behavioral Statistics, 45(2):227–248. SAGE Publications, Los Angeles, CA.
|
|
7 |
Schelter, S., Boese, J.-H., Kirschnick, J., Klein, T., and Seufert, S. (2017). Automatically tracking metadata and provenance of machine learning experiments. In NeurIPS 2017, pages 27–29.
|
|
8 |
Schlegel, M. and Sattler, K.-U. (2023). Management of Machine Learning Lifecycle Artifacts: A Survey. SIGMOD Record, 51(4).
|
|
9 |
Spinner, T., Schlegel, U., Schäfer, H., and El-Assady, M. (2020). explAIner: A visual analytics framework for interactive and explainable machine learning. IEEE transactions on visualization and computer graphics, 26(1):1064–1074. Publisher: IEEE.
|
|
10 |
Victorino, M. and Bräscher, M. (2009). Organização da informação e do conhecimento, engenharia de software e arquitetura orientada a serviços: uma abordagem holı́stica para o desenvolvimento de sistemas de informação computadorizados. Revista de Ciência da Informação, 10(3).
|
|
11 |
Wang, J., Liu, S., and Zhang, W. (2023). Visual Analytics For Machine Learning: A Data Perspective Survey. arXiv e-prints, page arXiv:2307.07712.
|
|
12 |
Yuan, J., Chen, C., Yang, W., Liu, M., Xia, J., and Liu, S. (2021). A survey of visual analytics techniques for machine learning. Computational Visual Media, 7(1):3–36. Publisher: Springer.
|
|