1 |
Aken, D. V., Yang, D., Brillard, S., Fiorino, A., Zhang, B., Billian, C., and Pavlo, A. (2021). An inquiry into machine learning-based automatic configuration tuning services on real-world database management systems. PVLDB, pages 1241–1253.
|
|
2 |
Almeida, A. C., Baião, F. A., Lifschitz, S., Schwabe, D., and Campos, M. L. M. (2021). Tun-ocm : A model-driven approach to support database tuning decision making. Decision Support Systems, page 113538.
|
|
3 |
Almeida, A. C., Campos, M. L. M., Baião, F. A., Lifschitz, S., de Oliveira, R. P., and Schwabe, D. (2019). An ontological perspective for database tuning heuristics. In Int. Conf. on Conceptual Modeling (ER), pages 240–254. Springer.
|
|
4 |
Bassiliades, N. (2020). A tool for transforming semantic web rule language to SPARQL infererecing notation. Intl. Journal Semantic Web Information Systems, pages 87–115.
|
|
5 |
de Almeida, A. C. B. (2013). Framework para apoiar a sintonia fina de banco de dados (in portuguese). PhD thesis, PUC-Rio.
|
|
6 |
Doulaverakis, C., Koutkias, V., Antoniou, G., and Kompatsiaris, I. (2016). Applying sparql-based inference and ontologies for modelling and execution of clinical practice guidelines: a case study on hypertension management. In Knowledge Representation for Health Care, pages 90–107. Springer.
|
|
7 |
Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowledge Acquisition, pages 199–220.
|
|
8 |
Morelli, E. T., Almeida, A. C., Lifschitz, S., Monteiro, J. M., and Machado, J. C. (2012). Autonomous re-indexing. In Symp. on Applied Computing, pages 893–897. ACM.
|
|
9 |
Promkot, A.-n., Arch-int, S., and Arch-int, N. (2019). The personalized traditional medicine recommendation system using ontology and rule inference approach. In 4th Intl. Conf. on Computer and Communication Systems, pages 96–104. IEEE.
|
|
10 |
Shasha, D. E. and Bonnet, P. (2002). Database Tuning - Principles, Experiments, and Troubleshooting Techniques. Elsevier.
|
|
11 |
Staab, S. and Studer, R. (2010). Handbook on ontologies. Springer Sci & Bus. Media.
|
|
12 |
Suganya, G. and Porkodi, R. (2018). Ontology based information extraction-a review. In Intl. Conf. on Current Trends towards Converging Technologies, pages 1–7. IEEE
|
|
13 |
Valentin, G., Zuliani, M., Zilio, D. C., Lohman, G., and Skelley, A. (2000). Db2 advisor: an optimizer smart enough to recommend its own indexes. In 16th Intl. Conf. on Data Engineering, pages 101–110. IEEE Computer Society.
|
|
14 |
Zhang, J., Zhou, K., Li, G., Liu, Y., Xie, M., Cheng, B., and Xing, J. (2021). Cdbtune+: An efficient deep reinforcement learning-based automatic cloud database tuning system. VLDB, pages 1–29.
|
|