1 |
Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M., Roberts, K., Walter, P., Wilson, J., and Hunt,
T. Biologia Molecular da Célula. Vol. 6. Artmed, Porto Alegre, Brasil, 2017.
|
|
2 |
Chow, L. T., Roberts, J. M., Lewis, J. B., and Broker, T. R. A map of cytoplasmic rna transcripts from lytic
adenovirus type 2, determined by electron microscopy of rna:dna hybrids. Cell 11 (4): 819–836, 1977.
|
|
3 |
Crick, F. H. C. On protein synthesis. Symposia of the Society for Experimental Biology vol. 12, pp. 138–163, 1958.
|
|
4 |
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT: Pre-training of deep bidirectional transformers for
language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), J. Burstein,
C. Doran, and T. Solorio (Eds.). Association for Computational Linguistics, Minneapolis, Minnesota, pp. 4171–4186,
2019.
|
|
5 |
Du, X., Yao, Y., Diao, Y., Zhu, H., Zhang, Y., and Li, S. Deepss: Exploring splice site motif through convolutional
neural network directly from dna sequence. IEEE Access vol. PP, pp. 1–1, 06, 2018.
|
|
6 |
Hochreiter, S. and Schmidhuber, J. Long Short-Term Memory. Neural Computation 9 (8): 1735–1780, 11, 1997.
|
|
7 |
Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., and Chen, W. Lora: Low-rank
adaptation of large language models, 2021.
|
|
8 |
Jaganathan, K., Kyriazopoulou Panagiotopoulou, S., McRae, J. F., Darbandi, S. F., Knowles, D., Li,
Y. I., Kosmicki, J. A., Arbelaez, J., Cui, W., Schwartz, G. B., Chow, E. D., Kanterakis, E., Gao, H.,
Kia, A., Batzoglou, S., Sanders, S. J., and Farh, K. K.-H. Predicting splicing from primary sequence with
deep learning. Cell 176 (3): 535–548.e24, Jan, 2019.
|
|
9 |
Ji, Y., Zhou, Z., Liu, H., and Davuluri, R. V. Dnabert: Pre-trained bidirectional encoder representations for dna
sequences. Bioinformatics 37 (15): 2112–2120, 2021.
|
|
10 |
Jónsson, B. A., Halldórsson, G. H., Árdal, S., Rögnvaldsson, S., Einarsson, E., Sulem, P., Guðbjartsson,
D. F., Melsted, P., Stefánsson, K., and Úlfarsson, M. Ö. Transformers significantly improve splice site
prediction. Communications Biology 7 (1): 1616, December, 2024.
|
|
11 |
Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied to document recognition.
Proceedings of the IEEE 86 (11): 2278–2324, 1998.
|
|
12 |
Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. Improving language understanding by gener-
ative pre-training. https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_
paper.pdf, 2018. OpenAI Technical Report.
|
|
13 |
Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., and Liu, P. J.
Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of Machine Learning
Research 21 (140): 1–67, 2020.
|
|
14 |
Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning representations by back-propagating errors.
Nature 323 (6088): 533–536, 1986.
|
|
15 |
Sarkar, R., Chatterjee, C., Das, S., and Mondal, D. Splice junction prediction in dna sequence using multilayered
rnn model. In Proceedings of the International Conference on Computer Vision and Image Processing (CVIP 2019),
A. K. Singh, P. Choudhury, and P. P. Chattopadhyay (Eds.). Springer International Publishing, Cham, Switzerland,
pp. 39–47, 2020.
|
|
16 |
Sharp, P. A. The discovery of split genes and rna splicing. Trends in Biochemical Sciences vol. 30, pp. 279–281, 2005.
|
|
17 |
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin,
I. Attention is all you need, 2017.
|
|
18 |
Wang, R., Wang, Z., Wang, J., and Li, S. Splicefinder: ab initio prediction of splice sites using convolutional neural
network. BMC Bioinformatics 20 (23): 652, Dec, 2019.
|
|
19 |
Watson, J. D., Baker, T. A., Bell, S. P., Gann, A., Levine, M., and Losick, R. Biologia Molecular do Gene.
Vol. 7. Artmed, Porto Alegre, 2015.
|
|
20 |
Zhang, D., Zhang, W., Zhao, Y., Zhang, J., He, B., Qin, C., and Yao, J. Dnagpt: A generalized pre-trained
tool for versatile dna sequence analysis tasks, 2023.
|
|
21 |
Zhang, Y., Liu, X., MacLeod, J., and Liu, J. Discerning novel splice junctions derived from rna-seq alignment: a
deep learning approach. BMC Genomics 19 (1): 971, Dec, 2018.
|
|
22 |
Zuallaert, J., Godin, F., Kim, M., Soete, A., Saeys, Y., and De Neve, W. Splicerover: interpretable convolu-
tional neural networks for improved splice site prediction. Bioinformatics 34 (24): 4180–4188, 06, 2018.
|
|