SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Maicon Banni(maiconbanni@id.uff.br)
2 Isabel Rosseti(rosseti@ic.uff.br)
3 Daniel de Oliveira(danielcmo@ic.uff.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Bellini, E., Bellini, P., Cenni, D., Nesi, P., Pantaleo, G., Paoli, I., and Paolucci, M. (2021). An ioe and big multimedia data approach for urban transport system resilience mana- gement in smart cities. Sensors, 21:435.
2 Bilal, M., Usmani, R. S. A., Tayyab, M., Mahmoud, A. A., Abdalla, R. M., Marjani, M., Pillai, T. R., and Targio Hashem, I. A. (2020). Smart Cities Data: Framework, Applications, and Challenges, pages 1–29. Springer International Publishing, Cham.
3 Boeing, G. (2017). Osmnx: New methods for acquiring, constructing, analyzing, and visualizing complex street networks. Comp., Env. and Urban Sys., 65:126–139.
4 Caban, J. J. and Gotz, D. (2015). Visual analytics in healthcare – opportunities and rese- arch challenges. J. of the American Med. Inf. Assoc., 22:260–262.
5 Chen, H., Cheng, T., and Wise, S. (2017). Developing an online cooperative police patrol routing strategy. Computers, Environment and Urban Systems, 62:19–29.
6 Consoli, S., Mongiov`ı, M., Nuzzolese, A. G., Peroni, S., Presutti, V., Recupero, D. R., and Spampinato, D. (2015). A smart city data model based on semantics best practice and principles. In WWW 2015, pages 1395–1400. ACM.
7 Costa, C. and Santos, M. Y. (2017). The suscity big data warehousing approach for smart cities. IDEAS 2017, page 264–273, New York, NY, USA. ACM.
8 de Oliveira, D., Rodrigues, E., Costa, S., Amora, P. R. P., Caldas, A., Horta, M., de Fillip- pis, A. M., Ocan ̃a, K. A. C. S., Vidal, V. M. P., and Machado, J. C. (2019a). Um estudo comparativo de mecanismos de privacidade diferencial sobre um dataset de ocorreˆncias do ZIKV no brasil. In XXXIV Simpo ́sio Brasileiro de Banco de Dados, SBBD 2019, Fortaleza, CE, Brazil, October 7-10, 2019, pages 253–258. SBC.
9 de Oliveira, D. C. M., Liu, J., and Pacitti, E. (2019b). Data-Intensive Work ow Manage- ment: For Clouds and Data-Intensive and Scalable Computing Environments. Synthe- sis Lectures on Data Management. Morgan & Claypool Publishers.
10 de Oliveira, W. M., de Oliveira, D., and Braganholo, V. (2018). Provenance analy- tics for work ow-based computational experiments: A survey. ACM Comput. Surv., 51(3):53:1–53:25.
11 Dwork, C. and Lei, J. (2009). Differential privacy and robust statistics. In Proceedings of the forty- rst annual ACM symposium on Theory of computing, pages 371–380.
12 Freire, J., Koop, D., Santos, E., and Silva, C. T. (2008). Provenance for Computational Tasks: A Survey. Computing in Science & Engineering, pages 20–30.
13 Garcia-Font, V. (2020). Socialblock: An architecture for decentralized user-centric data management applications for communications in smart cities. JPDC, 145:13–23.
14 Jindal, A., Kumar, N., and Singh, M. (2020). A uni ed framework for big data acquisi- tion, storage, and analytics for demand response management in smart cities. FGCS, 108:921–934.
15 Liu, X., Heller, A., and Nielsen, P. S. (2017). Citiesdata: a smart city data management framework. Knowl. Inf. Syst., 53:699–722.
16 Liu, Z. and Heer, J. (2014). The effects of interactive latency on exploratory visual analy- sis. IEEE transactions on visualization and computer graphics, 20:2122–2131.
17 Lourenço, V., Mann, P., Guimaraes, A., Paes, A., and de Oliveira, D. (2018). Towards safer (smart) cities: Discovering urban crime patterns using logic-based relational ma- chine learning. In 2018 International Joint Conference on Neural Networks, IJCNN 2018, Rio de Janeiro, Brazil, July 8-13, 2018, pages 1–8. IEEE.
18 Mehmood, H., Gilman, E., Cortes, M., Kostakos, P., Byrne, A., Valta, K., Tekes, S., and Riekki, J. (2019). Implementing big data lake for heterogeneous data sources. In ICDEW 2019, pages 37–44.
19 Nandury, S. V. and Begum, B. A. (2016). Strategies to handle big data for traf c mana- gement in smart cities. In ICACCI 2016, India, pages 356–364. IEEE.
20 Nargesian, F., Zhu, E., Miller, R. J., Pu, K. Q., and Arocena, P. C. (2019). Data lake management: Challenges and opportunities. Proc. VLDB Endow., 12:1986–1989.
21 Pisco, V. G. and Marques-Neto, H. T. (2021). iwalk: Uma soluc ̧a ̃o para medic ̧a ̃o e ana ́lise da caminhabilidade de cidades com portais de dados abertos. In Anais do V Workshop de Computac ̧a ̃o Urbana, pages 84–97. SBC.
22 Raghavan, S., Boung Yew, S. L., Lee, Y. L., Tan, W., and Kee, K. K. (2019). Data Integration for Smart Cities: Opportunities and Challenges, pages 393–403.
23 Ribeiro, M. B. and Braghetto, K. R. (2021). A data integration architecture for smart cities. In SBBD 2021, Rio de Janeiro, Brazil, pages 205–216. SBC.
24 Ribeiro, M. W. M., Lima, A. A. B., and de Oliveira, D. (2020). OLAP parallel query processing in clouds with c-pargres. Concurr. Comput. Pract. Exp., 32(7).
25 Silva, J., Almeida, J. G., Batista, T., and Cavalcante, E. (2021). Aquedu ̈cte: A data integration service for smart cities. WebMedia ’21, page 177–180, NY, USA. ACM.
26 Silva, V., Leite, J., Camata, J. J., de Oliveira, D., Coutinho, A. L. G. A., Valduriez, P., and Mattoso, M. (2017). Raw data queries during data-intensive parallel work ow execution. FGCS, 75:402–422.
27 Zhou, R., Zhang, X., Wang, X., Yang, G., Guizani, N., and Du, X. (2021). Ef cient and traceable patient health data search system for hospital management in smart cities. IEEE Internet Things J., 8(8):6425–6436.