1 |
Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-dujaili, A., Duan, Y., Al-Shamma, O., Santamarıa, J., Fadhel, M. A., Al-Amidie, M., and Farhan, L. (2021). Review of deep learning: concepts, cnn architectures, challenges, applications, future directions. Journal of Big Data, 8. DOI: 10.1186/s40537-021-00444-8.
|
|
2 |
Castro, F. M., Marin-Jimenez, M. J., Guil, N., Schmid, C., and Alahari, K. (2018). End-to-end incremental learning. In ECCV, pages 241–257, Munich, Germany. Springer. DOI: 10.1007/978-3-030-01258-8 15.
|
|
3 |
de Lima, M. C., Barioni, M. C. N., Faria, E. R., and Razente, H. L. (2020). Evisclass: a new evaluation method for image data stream classifiers. In ICMLA, pages 399–406. DOI: 10.1109/ICMLA51294.2020.00070.
|
|
4 |
Hu, J., Sun, Z., Li, B., Yang, K., and Li, D. (2017). Online user modeling for interactive streaming image classification. In MMM, pages 293–305, Reykjavik, -Iceland. Springer. DOI: 10.1007/978-3-319-51814-5 25.
|
|
5 |
Mani, P., Vazquez, M., Metcalf-Burton, J., Domeniconi, C., Fairbanks, H., Bal, G., Beer, E., and Tari, S. (2019). The hubness phenomenon in high-dimensional spaces. AWMS, pages 15–45. DOI: 10.1007/978-3-030-11566-1 2.
|
|
6 |
Nguyen, H.-L., Woon, Y.-K., and Ng, W.-K. (2015). A survey on data stream clustering and classification. Knowl.Inf.Syst., 45(3):535–569. DOI:10.1007/s10115-014-0808-1.
|
|
7 |
Parreira, P. and Prati, R. (2019). Active learning in data stream with intermediate latency. In ENIAC, Salvador, Brazil. DOI: 10.5753/eniac.2019.
|
|
8 |
Pham, T., Kottke, D., Krempl, G., and Sick, B. (2021). Stream-based active learning for sliding windows under the influence of verification latency. Machine Learning. DOI:10.1007/s10994-021-06099-z.
|
|
9 |
Rebuffi, S.-A., Kolesnikov, A., Sperl, G., and Lampert, C. H. (2017). iCaRL: Incremental classifier and representation learning. In CVPR, pages 5533–5542, Honolulu, Hawaii. IEEE. DOI: 10.1109/CVPR.2017.587.
|
|
10 |
Ristin, M., Guillaumin, M., Gall, J., and Gool, L. V. (2014). Incremental learning of ncm forests for large-scale image classification. In CVPR, pages 3654–3661, Columbus, Ohio. IEEE. DOI: 10.1109/CVPR.2014.467.
|
|
11 |
Romaszewski, M., Głomb, P., and Cholewa, M. (2018). Adaptive, hubness-aware nearest neighbour classifier with application to hyperspectral data. In ISCIS, pages 113–120, Poznan, Polonia. DOI: 10.1007/978-3-030-00840-6_13.
|
|
12 |
Samet, H. (2005). Foundations of Multidimensional and Metric Data Structures. Morgan Kaufmann.
|
|
13 |
Silva, J. A., Faria, E. R., Barros, R. C., Hruschka, E. R., Carvalho, A. C. P. L. F. d., and Gama, J. a. (2013). Data stream clustering: A survey. ACM Comput. Surv., 46(1):13:1–13:31. DOI: 10.1145/2522968.2522981.
|
|
14 |
Tomasev, N., Radovanovic, M., Mladenic, D., and Ivanovic, M. (2014). Hubness-based fuzzy measures for high-dimensional k-nearest neighbor classification. Int. J. Mach. Learn. e Cyber., 5:445–458. DOI: 10.1007/s13042-012-0137-1.
|
|
15 |
Wang, H., Zhou, Z., Wang, Y., and Yan, X. (2021). Feature selection for image classification based on bacterial colony optimization. In ICSI, page 430–439, Qingdao, China. Springer. DOI: 10.1007/978-3-030-78811-7 40.
|
|
16 |
Wang, Z., Kong, Z., Changra, S., Tao, H., and Khan, L. (2019). Robust high dimensional stream classification with novel class detection. In ICDE, pages 1418–1429, Macao, Macao. IEEE. DOI: 10.1109/ICDE.2019.0012.
|
|
17 |
Wu, Q., Lin, Y., Zhu, T., and Zhang, Y. (2020). Hiboost: A hubness-aware ensemble learning algorithm for high-dimensional imbalanced data classification. J. Intell. Fuzzy Syst., 39:1–12. DOI: 10.3233/JIFS-190821.
|
|
18 |
Zliobaite, I., Bifet, A., Pfahringer, B., and Holmes, G. (2014). Active learning with drifting streaming data. TNNLS, 25(1):27–39. DOI: 10.1109/TNNLS.2012.2236570.
|
|