SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Mateus de Lima(mateuscurcino@mestrado.ufu.br)
2 Elaine Faria(elaine@ufu.br)
3 Maria Camila Barioni(camila.barioni@ufu.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-dujaili, A., Duan, Y., Al-Shamma, O., Santamarıa, J., Fadhel, M. A., Al-Amidie, M., and Farhan, L. (2021). Review of deep learning: concepts, cnn architectures, challenges, applications, future directions. Journal of Big Data, 8. DOI: 10.1186/s40537-021-00444-8.
2 Castro, F. M., Marin-Jimenez, M. J., Guil, N., Schmid, C., and Alahari, K. (2018). End-to-end incremental learning. In ECCV, pages 241–257, Munich, Germany. Springer. DOI: 10.1007/978-3-030-01258-8 15.
3 de Lima, M. C., Barioni, M. C. N., Faria, E. R., and Razente, H. L. (2020). Evisclass: a new evaluation method for image data stream classifiers. In ICMLA, pages 399–406. DOI: 10.1109/ICMLA51294.2020.00070.
4 Hu, J., Sun, Z., Li, B., Yang, K., and Li, D. (2017). Online user modeling for interactive streaming image classification. In MMM, pages 293–305, Reykjavik, -Iceland. Springer. DOI: 10.1007/978-3-319-51814-5 25.
5 Mani, P., Vazquez, M., Metcalf-Burton, J., Domeniconi, C., Fairbanks, H., Bal, G., Beer, E., and Tari, S. (2019). The hubness phenomenon in high-dimensional spaces. AWMS, pages 15–45. DOI: 10.1007/978-3-030-11566-1 2.
6 Nguyen, H.-L., Woon, Y.-K., and Ng, W.-K. (2015). A survey on data stream clustering and classification. Knowl.Inf.Syst., 45(3):535–569. DOI:10.1007/s10115-014-0808-1.
7 Parreira, P. and Prati, R. (2019). Active learning in data stream with intermediate latency. In ENIAC, Salvador, Brazil. DOI: 10.5753/eniac.2019.
8 Pham, T., Kottke, D., Krempl, G., and Sick, B. (2021). Stream-based active learning for sliding windows under the influence of verification latency. Machine Learning. DOI:10.1007/s10994-021-06099-z.
9 Rebuffi, S.-A., Kolesnikov, A., Sperl, G., and Lampert, C. H. (2017). iCaRL: Incremental classifier and representation learning. In CVPR, pages 5533–5542, Honolulu, Hawaii. IEEE. DOI: 10.1109/CVPR.2017.587.
10 Ristin, M., Guillaumin, M., Gall, J., and Gool, L. V. (2014). Incremental learning of ncm forests for large-scale image classification. In CVPR, pages 3654–3661, Columbus, Ohio. IEEE. DOI: 10.1109/CVPR.2014.467.
11 Romaszewski, M., Głomb, P., and Cholewa, M. (2018). Adaptive, hubness-aware nearest neighbour classifier with application to hyperspectral data. In ISCIS, pages 113–120, Poznan, Polonia. DOI: 10.1007/978-3-030-00840-6_13.
12 Samet, H. (2005). Foundations of Multidimensional and Metric Data Structures. Morgan Kaufmann.
13 Silva, J. A., Faria, E. R., Barros, R. C., Hruschka, E. R., Carvalho, A. C. P. L. F. d., and Gama, J. a. (2013). Data stream clustering: A survey. ACM Comput. Surv., 46(1):13:1–13:31. DOI: 10.1145/2522968.2522981.
14 Tomasev, N., Radovanovic, M., Mladenic, D., and Ivanovic, M. (2014). Hubness-based fuzzy measures for high-dimensional k-nearest neighbor classification. Int. J. Mach. Learn. e Cyber., 5:445–458. DOI: 10.1007/s13042-012-0137-1.
15 Wang, H., Zhou, Z., Wang, Y., and Yan, X. (2021). Feature selection for image classification based on bacterial colony optimization. In ICSI, page 430–439, Qingdao, China. Springer. DOI: 10.1007/978-3-030-78811-7 40.
16 Wang, Z., Kong, Z., Changra, S., Tao, H., and Khan, L. (2019). Robust high dimensional stream classification with novel class detection. In ICDE, pages 1418–1429, Macao, Macao. IEEE. DOI: 10.1109/ICDE.2019.0012.
17 Wu, Q., Lin, Y., Zhu, T., and Zhang, Y. (2020). Hiboost: A hubness-aware ensemble learning algorithm for high-dimensional imbalanced data classification. J. Intell. Fuzzy Syst., 39:1–12. DOI: 10.3233/JIFS-190821.
18 Zliobaite, I., Bifet, A., Pfahringer, B., and Holmes, G. (2014). Active learning with drifting streaming data. TNNLS, 25(1):27–39. DOI: 10.1109/TNNLS.2012.2236570.