SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Beatriz Miranda(beatriz.miranda@ccc.ufcg.edu.br)
2 Claudio Elízio Calazans Campelo(campelo@computacao.ufcg.edu.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S., Anadkat, S., et al. (2024). Gpt-4 technical report. arXiv preprint arXiv:2303.08774.
2 Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar, E., Lee, P., Lee, Y. T., Li, Y., Lundberg, S., et al. (2023). Sparks of artificial general intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712.
3 Cheng, L., Li, X., and Bing, L. (2023). Is gpt-4 a good data analyst? Journal of Artificial Intelligence Research, Findings of the Association for Computational Linguistics: EMNLP 2023:9496—-9514.
4 Daibes, M. and Lima, B. B. (2024). Cracking the heart code: using chatgpt’s data analyst feature for cardiovascular imaging research. The International Journal of Cardiovascular Imaging, pages 1–2.
5 Ding, B., Qin, C., Liu, L., Chia, Y. K., Li, B., Joty, S., and Bing, L. (2023). Is gpt-3 a good data annotator? pages 11173–11195.
6 Jaimovitch-Lopez, G., Ferri, C., Hernandez-Orallo, J., Martınez-Plumed, F., and Ramırez-Quintana, M. J. (2022). Can language models automate data wrangling? Machine Learning, 112:2053—-2082.
7 Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D. S., Casas, D. d. l., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., et al. (2023). Mistral 7b.
8 Kasetty, T., Mahajan, D., Dziugaite, G. K., Drouin, A., and Sridhar, D. (2024). Evaluating interventional reasoning capabilities of large language models. arXiv preprint arXiv:2404.05545.
9 Liu, X., Wu, Z., Wu, X., Lu, P., Chang, K.-W., and Feng, Y. (2024). Are llms capable of data-based statistical and causal reasoning? benchmarking advanced quantitative reasoning with data.
10 Nasseri, M., Brandtner, P., Zimmermann, R., Falatouri, T., Darbanian, F., and Obinwanne, T. (2023). Applications of large language models (llms) in business analytics – exemplary use cases in data preparation tasks. 14059:182–198.
11 Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A., et al. (2022). Training language models to follow instructions with human feedback. Advances in neural information processing systems, 35:27730–27744.
12 Sharma, A., Li, X., Guan, H., Sun, G., Zhang, L., Wang, L., Wu, K., Cao, L., Zhu, E., Sim, A., Wu, T., and Zou, J. (2023). Automatic data transformation using large language model - an experimental study on building energy data. pages 1824–1834.
13 Solaiman, I., Brundage, M., Clark, J., Askell, A., Herbert-Voss, A., Wu, J., Radford, A., and Wang, J. (2019). Release strategies and the social impacts of language models. CoRR, abs/1908.09203.
14 Team, G., Anil, R., Borgeaud, S., Wu, Y., Alayrac, J.-B., Yu, J., Soricut, R., Schalkwyk, J., Dai, A. M., Hauth, A., et al. (2023). Gemini: a family of highly capable multimodal models. arXiv preprint arXiv:2312.11805.
15 Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., et al. (2023). Llama 2: Open foundation and fine-tuned chat models.
16 Wei, J., Wang, X., Schuurmans, D., Bosma, M., ichter, b., Xia, F., Chi, E., Le, Q. V., and Zhou, D. (2022). Chain-of-thought prompting elicits reasoning in large language models. In Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., and Oh, A., editors, Advances in Neural Information Processing Systems, volume 35, pages 24824–24837. Curran Associates, Inc.
17 Zhang, H., Dong, Y., Xiao, C., and Oyamada, M. (2023). Large language models as data preprocessors.
18 Zhang, Y., Jiang, Q., Han, X., Chen, N., Yang, Y., and Ren, K. (2024). Benchmarking Data Science Agents. arXiv e-prints, page arXiv:2402.17168.