SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Maria Azolin Kotsifas(azolin@alunos.utfpr.edu.br)
2 Thiago Silva(thiagoh@utfpr.edu.br)
3 Ricardo Lüders(luders@utfpr.edu.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Ahn, H. and Park, E. (2023). Motivations for user satisfaction of mobile fitness applications: An analysis of user experience based on online review comments. Humanities and Social Sciences Communications, 10(1):1–7.
2 Amirkhalili, Y. and Wong, H. Y. (2025). Banking on feedback: Text analysis of mobile banking ios and google app reviews. arXiv preprint arXiv:2503.11861.
3 Aslam, N., Ramay, W. Y., Xia, K., and Sarwar, N. (2020). Convolutional neural network based classification of app reviews. IEEE Access, 8:185619–185628
4 Devlin, J., Chang, M., Lee, K., and Toutanova, K. (2018). BERT: pre-training of deep bidirectional transformers for language understanding. CoRR, abs/1810.04805.
5 Fatima, E., Kanwal, H., Khan, J. A., and Khan, N. D. (2024). An exploratory and automated study of sarcasm detection and classification in app stores using fine-tuned deep learning classifiers. Automated Software Engineering, 31(2):69.
6 Fischer, R. A.-L., Walczuch, R., and Guzman, E. (2021). Does culture matter? impact of indi- vidualism and uncertainty avoidance on app reviews. In 2021 IEEE/ACM 43rd International Conference on Software Engineering: Software Engineering in Society (ICSE-SEIS), pages 67–76. IEEE.
7 Grootendorst, M. (2022). Bertopic: Neural topic modeling with a class-based tf-idf procedure. arXiv preprint arXiv:2203.05794.
8 Krishnan, A. (2023). Exploring the power of topic modeling techniques in analyzing customer reviews: a comparative analysis. arXiv preprint arXiv:2308.11520.
9 Pranatawijaya, V. H., Sari, N. N. K., Rahman, R. A., Christian, E., and Geges, S. (2024). Un- veiling user sentiment: Aspect-based analysis and topic modeling of ride-hailing and google play app reviews. Journal of Information Systems Engineering and Business Intelligence, 10(3):328–339.
10 Santos, G., Mota, V. F. S., Benevenuto, F., and Silva, T. H. (2020). Neutrality may matter: sen- timent analysis in reviews of Airbnb, Booking, and Couchsurfing in Brazil and USA. Social Network Analysis and Mining, 10(1):45.
11 Statista (2025). Annual number of global mobile app downloads 2016-2023. https://www.statista. com/statistics/271644/worldwide-free-and-paid-mobile-app-store-downloads/.