1 |
[de Araujo et al. 2013] de Araujo, A. H. M., Monteiro, J. M., de Macedo, J. A. F., and
Brayner, A. (2013). On using an automatic, autonomous and non-intrusive approach
for rewriting sql queries. Journal of Information and Data Management, 3(3):1–15.
|
|
2 |
[DeepSeek 2025] DeepSeek (2025). Deepseek. https://www.deepseek.com/.
|
|
3 |
[Fan et al. 2020] Fan, A., Urbanek, J., Ringshia, P., Dinan, E., Qian, E., Karamcheti, S.,
Prabhumoye, S., Kiela, D., Rocktaschel, T., Szlam, A., et al. (2020). Generating in-
teractive worlds with text. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, pages 1693–1700.
|
|
4 |
[Faroult and L’Hermite 2008] Faroult, S. and L’Hermite, P. (2008). Refactoring SQL Appli-
cations. O’Reilly Media, Sebastopol, CA.
|
|
5 |
[Garcia-Molina et al. 2000] Garcia-Molina, H., Ullman, J. D., and Widom, J. (2000).
Database System Implementation. Prentice Hall, New Jersey, USA.
|
|
6 |
[Hadi et al. 2023] Hadi, M. U., Qureshi, R., Shah, A., Irfan, M., Zafar, A., Shaikh, M. B.,
Akhtar, N., Wu, J., Mirjalili, S., et al. (2023). Large language models: a comprehen-
sive survey of its applications, challenges, limitations, and future prospects. Authorea
Preprints, 1:1–26.
|
|
7 |
[Hong et al. 2024] Hong, Z., Yuan, Z., Zhang, Q., Chen, H., Dong, J., Huang, F., and Huang,
X. (2024). Next-generation database interfaces: A survey of llm-based text-to-sql.
arXiv preprint arXiv:2406.08426.
|
|
8 |
[Minaee et al. 2024] Minaee, S., Mikolov, T., Nikzad, N., Chenaghlu, M., Socher, R., Am-
atriain, X., and Gao, J. (2024). Large language models: A survey. arxiv 2024. arXiv
preprint arXiv:2402.06196.
|
|
9 |
[Ministério da Cultura 2025] Ministério da Cultura (2025). Mapas culturais - funarte.
https://mapas.cultura.gov.br/.
|
|
10 |
[Nascimento 2024] Nascimento, E. R. S. (2024). Querying databases with natural language:
The use of large language models for text-to-sql tasks. Dissertação de mestrado, Pon-
tifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil.
Advisor: Marco Antonio Casanova.
|
|
11 |
[OpenAI 2025] OpenAI (2025). Chatgpt.
|
|
12 |
[Ozdemir 2023] Ozdemir, S. (2023). Quick start guide to large language models: strategies
and best practices for using ChatGPT and other LLMs. Addison-Wesley Professional.
|
|
13 |
[Pedroso et al. 2025] Pedroso, B. C., Pereira, M. R., and Pereira, D. A. (2025). Performance
evaluation of llms in the text-to-sql task in portuguese. In Proceedings of the SBSI25,
Recife, PE.
|
|
14 |
[Ramakrishnan and Gehrke 2002] Ramakrishnan, R. and Gehrke, J. (2002). Database Man-
agement Systems. McGraw-Hill, 3rd edition.
|
|
15 |
[Sala et al. 2024] Sala, L., Sullutrone, G., and Bergamaschi, S. (2024). Text-to-sql with
large language models: Exploring the promise and pitfalls. In Proceedings of the 32nd
Symposium on Advanced Database Systems (SEBD 2024). CEUR Workshop Proceed-
ings.
|
|
16 |
[Shasha and Bonnet 2003] Shasha, D. and Bonnet, P. (2003). Database Tuning: Principles,
Experiments, and Troubleshooting Techniques. Morgan Kaufmann.
|
|
17 |
[Yang et al. 2024] Yang, J., Jin, H., Tang, R., Han, X., Feng, Q., Jiang, H., Zhong, S., Yin,
B., and Hu, X. (2024). Harnessing the power of llms in practice: A survey on chatgpt
and beyond. ACM Transactions on Knowledge Discovery from Data, 18(6):1–32.
|
|
18 |
[Zhang et al. 2024] Zhang, Y., Jin, H., Meng, D., Wang, J., and Tan, J. (2024). A compre-
hensive survey on process-oriented automatic text summarization with exploration of
llm-based methods. arXiv preprint arXiv:2403.02901. Preprint, not peer-reviewed.
|
|
19 |
[Zhu et al. 2024] Zhu, X., Li, Q., Cui, L., and Liu, Y. (2024). Large language model en-
hanced text-to-sql generation: A survey. arXiv preprint arXiv:2410.06011. Preprint,
not peer-reviewed.
|
|