SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Afonso Sousa Lima(afonso.matheus@usp.br)
2 Elaine Sousa(parros@icmc.usp.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Bahri, M., Bifet, A., Gama, J., Gomes, H. M., and Maniu, S. (2021). Data stream analysis: Foundations, major tasks and tools. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 11(3):e1405.
2 Dong, W., Gao, S., Yang, X., and Yu, H. (2021). An exploration of online missing value imputation in non-stationary data stream. SN Computer Science, 2:1–11.
3 Fountas, P. and Kolomvatsos, K. (2020). A continuous data imputation mechanism based on streams correlation. In 2020 IEEE Symposium on Computers and Communications (ISCC), pages 1–6. IEEE.
4 Halder, B., Ahmed, M. M., Amagasa, T., Isa, N. A. M., Faisal, R. H., and Rahman, M. M. (2022). Missing information in imbalanced data stream: fuzzy adaptive imputation approach. Applied Intelligence, 52(5):5561–5583.
5 Isgut, M., Gloster, L., Choi, K., Venugopalan, J., and Wang, M. D. (2022). Systematic review of advanced ai methods for improving healthcare data quality in post covid-19 era. IEEE Reviews in Biomedical Engineering, 16:53–69.
6 Li, X., Li, H., Lu, H., Jensen, C. S., Pandey, V., and Markl, V. (2023). Missing value imputation for multi-attribute sensor data streams via message propagation. Proceedings of the VLDB Endowment, 17(3):345–358.
7 Lima, A. S. and Sousa, E. (2024). Handling missing values in data streams: An overview. In Anais do XXXIX Simp ́osio Brasileiro de Bancos de Dados, pages 750–756, Porto Alegre, RS, Brasil. SBC.
8 Liu, W., Luo, L., and Zhou, L. (2023). Online missing value imputation for highdimensional mixed-type data via generalized factor models. Computational Statistics & Data Analysis, 187:107822.
9 Mangussi, A. D., Santos, M. S., Lopes, F. L., Pereira, R. C., Lorena, A. C., and Abreu, P. H. (2024). mdatagen: A python library for generating missing data. https://arthurmangussi.github.io/pymdatagen/.
10 Mishra, T., Wang, M., Metwally, A. A., Bogu, G. K., Brooks, A. W., Bahmani, A., Alavi, A., Celli, A., Higgs, E., Dagan-Rosenfeld, O., et al. (2020). Pre-symptomatic detection of covid-19 from smartwatch data. Nature biomedical engineering, 4(12):1208–1220.
11 Psychogyios, K., Ilias, L., Ntanos, C., and Askounis, D. (2023). Missing value imputation methods for electronic health records. IEEE Access, 11:21562–21574.
12 Ren, L., Wang, T., Seklouli, A. S., Zhang, H., and Bouras, A. (2023). A review on missing values for main challenges and methods. Information Systems, page 102268.
13 Santos, M. S., Pereira, R. C., Costa, A. F., Soares, J. P., Santos, J., and Abreu, P. H. (2019). Generating synthetic missing data: A review by missing mechanism. IEEE Access, 7:11651–11667.
14 Sun, Z., Zeng, G., and Ding, C. (2020). Imputation for missing items in a stream data based on gamma distribution. In International Conference on Smart Computing and Communication, pages 236–247. Springer.
15 Zhang, Y. and Thorburn, P. J. (2022). Handling missing data in near real-time environmental monitoring: A system and a review of selected methods. Future Generation Computer Systems, 128:63–72.