1 |
Bahri, M., Bifet, A., Gama, J., Gomes, H. M., and Maniu, S. (2021). Data stream analysis: Foundations, major tasks and tools. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 11(3):e1405.
|
|
2 |
Dong, W., Gao, S., Yang, X., and Yu, H. (2021). An exploration of online missing value imputation in non-stationary data stream. SN Computer Science, 2:1–11.
|
|
3 |
Fountas, P. and Kolomvatsos, K. (2020). A continuous data imputation mechanism based on streams correlation. In 2020 IEEE Symposium on Computers and Communications (ISCC), pages 1–6. IEEE.
|
|
4 |
Halder, B., Ahmed, M. M., Amagasa, T., Isa, N. A. M., Faisal, R. H., and Rahman, M. M. (2022). Missing information in imbalanced data stream: fuzzy adaptive imputation approach. Applied Intelligence, 52(5):5561–5583.
|
|
5 |
Isgut, M., Gloster, L., Choi, K., Venugopalan, J., and Wang, M. D. (2022). Systematic review of advanced ai methods for improving healthcare data quality in post covid-19 era. IEEE Reviews in Biomedical Engineering, 16:53–69.
|
|
6 |
Li, X., Li, H., Lu, H., Jensen, C. S., Pandey, V., and Markl, V. (2023). Missing value imputation for multi-attribute sensor data streams via message propagation. Proceedings of the VLDB Endowment, 17(3):345–358.
|
|
7 |
Lima, A. S. and Sousa, E. (2024). Handling missing values in data streams: An overview. In Anais do XXXIX Simp ́osio Brasileiro de Bancos de Dados, pages 750–756, Porto Alegre, RS, Brasil. SBC.
|
|
8 |
Liu, W., Luo, L., and Zhou, L. (2023). Online missing value imputation for highdimensional mixed-type data via generalized factor models. Computational Statistics & Data Analysis, 187:107822.
|
|
9 |
Mangussi, A. D., Santos, M. S., Lopes, F. L., Pereira, R. C., Lorena, A. C., and
Abreu, P. H. (2024). mdatagen: A python library for generating missing data. https://arthurmangussi.github.io/pymdatagen/.
|
|
10 |
Mishra, T., Wang, M., Metwally, A. A., Bogu, G. K., Brooks, A. W., Bahmani, A., Alavi, A., Celli, A., Higgs, E., Dagan-Rosenfeld, O., et al. (2020). Pre-symptomatic detection of covid-19 from smartwatch data. Nature biomedical engineering, 4(12):1208–1220.
|
|
11 |
Psychogyios, K., Ilias, L., Ntanos, C., and Askounis, D. (2023). Missing value imputation methods for electronic health records. IEEE Access, 11:21562–21574.
|
|
12 |
Ren, L., Wang, T., Seklouli, A. S., Zhang, H., and Bouras, A. (2023). A review on missing values for main challenges and methods. Information Systems, page 102268.
|
|
13 |
Santos, M. S., Pereira, R. C., Costa, A. F., Soares, J. P., Santos, J., and Abreu, P. H. (2019). Generating synthetic missing data: A review by missing mechanism. IEEE Access, 7:11651–11667.
|
|
14 |
Sun, Z., Zeng, G., and Ding, C. (2020). Imputation for missing items in a stream data based on gamma distribution. In International Conference on Smart Computing and Communication, pages 236–247. Springer.
|
|
15 |
Zhang, Y. and Thorburn, P. J. (2022). Handling missing data in near real-time environmental monitoring: A system and a review of selected methods. Future Generation Computer Systems, 128:63–72.
|
|