SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Afonso Sousa Lima(afonso.matheus@usp.br)
2 Elaine Sousa(parros@icmc.usp.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Bahri, M., Bifet, A., Gama, J., Gomes, H. M., and Maniu, S. (2021). Data stream analysis: Foundations, major tasks and tools. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 11(3):e1405.
2 Beyer, C., Buttner, M., and Spiliopoulou, M. (2023). Challenges for active feature acquisition and imputation on data streams. In Proceedings of the Workshop on IAL co-located with ECML-PKDD, volume 3470, pages 9–13, Torino, Italy. CEUR.
3 Bifet, A., Gavalda, R., Holmes, G., and Pfahringer, B. (2023). Machine learning for data streams: with practical examples in MOA. MIT press, 4th edition.
4 Dong, W., Gao, S., Yang, X., and Yu, H. (2021). An exploration of online missing value imputation in non-stationary data stream. SN Computer Science, 2:1–11.
5 Emmanuel, T., Maupong, T., Mpoeleng, D., Semong, T., Mphago, B., and Tabona, O. (2021). A survey on missing data in machine learning. Journal of Big data, 8:1–37.
6 Fountas, P. and Kolomvatsos, K. (2020). A continuous data imputation mechanism based on streams correlation. In 2020 IEEE Symposium on Computers and Communications (ISCC), pages 1–6. IEEE.
7 Gama, J. (2010). Knowledge discovery from data streams. Chapman and Hall/CRC, Boca Raton, Florida, USA.
8 Grant, M. J. and Booth, A. (2009). A typology of reviews: an analysis of 14 review types and associated methodologies. Health information & libraries journal, 26(2):91–108.
9 Halder, B., Ahmed, M. M., Amagasa, T., Isa, N. A. M., Faisal, R. H., and Rahman, M. M. (2022). Missing information in imbalanced data stream: fuzzy adaptive imputation approach. Applied Intelligence, 52(5):5561–5583.
10 Hu, H., Kantardzic, M., and Sethi, T. S. (2020). No free lunch theorem for concept drift detection in streaming data classification: A review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10(2):e1327.
11 Li, X., Li, H., Lu, H., Jensen, C. S., Pandey, V., and Markl, V. (2023). Missing value imputation for multi-attribute sensor data streams via message propagation. Proceedings of the VLDB Endowment, 17(3):345–358.
12 Lin, W.-C. and Tsai, C.-F. (2020). Missing value imputation: a review and analysis of the literature (2006–2017). Artificial Intelligence Review, 53:1487–1509.
13 Little, R. J. and Rubin, D. B. (2019). Statistical analysis with missing data, volume 793. John Wiley & Sons, Hoboken, New Jersey, USA.
14 Liu, W., Luo, L., and Zhou, L. (2023). Online missing value imputation for high- dimensional mixed-type data via generalized factor models. Computational Statistics & Data Analysis, 187:107822.
15 Mahdi, O. A., Ali, N., Pardede, E., Alazab, A., Al-Quraishi, T., and Das, B. (2024). Roadmap of concept drift adaptation in data stream mining, years later. IEEE Access, 12.
16 Ren, L., Wang, T., Seklouli, A. S., Zhang, H., and Bouras, A. (2023). A review on missing values for main challenges and methods. Information Systems, page 102268.
17 Sun, Z., Zeng, G., and Ding, C. (2020). Imputation for missing items in a stream data based on gamma distribution. In International Conference on Smart Computing and Communication, pages 236–247. Springer.
18 Zhang, Y. and Thorburn, P. J. (2022). Handling missing data in near real-time environmental monitoring: A system and a review of selected methods. Future Generation Computer Systems, 128:63–72.