1 |
Bahri, M., Bifet, A., Gama, J., Gomes, H. M., and Maniu, S. (2021). Data stream analysis:
Foundations, major tasks and tools. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 11(3):e1405.
|
|
2 |
Beyer, C., Buttner, M., and Spiliopoulou, M. (2023). Challenges for active feature acquisition and imputation on data streams. In Proceedings of the Workshop on IAL
co-located with ECML-PKDD, volume 3470, pages 9–13, Torino, Italy. CEUR.
|
|
3 |
Bifet, A., Gavalda, R., Holmes, G., and Pfahringer, B. (2023). Machine learning for data
streams: with practical examples in MOA. MIT press, 4th edition.
|
|
4 |
Dong, W., Gao, S., Yang, X., and Yu, H. (2021). An exploration of online missing value
imputation in non-stationary data stream. SN Computer Science, 2:1–11.
|
|
5 |
Emmanuel, T., Maupong, T., Mpoeleng, D., Semong, T., Mphago, B., and Tabona, O.
(2021). A survey on missing data in machine learning. Journal of Big data, 8:1–37.
|
|
6 |
Fountas, P. and Kolomvatsos, K. (2020). A continuous data imputation mechanism based
on streams correlation. In 2020 IEEE Symposium on Computers and Communications
(ISCC), pages 1–6. IEEE.
|
|
7 |
Gama, J. (2010). Knowledge discovery from data streams. Chapman and Hall/CRC, Boca
Raton, Florida, USA.
|
|
8 |
Grant, M. J. and Booth, A. (2009). A typology of reviews: an analysis of 14 review types
and associated methodologies. Health information & libraries journal, 26(2):91–108.
|
|
9 |
Halder, B., Ahmed, M. M., Amagasa, T., Isa, N. A. M., Faisal, R. H., and Rahman, M. M.
(2022). Missing information in imbalanced data stream: fuzzy adaptive imputation
approach. Applied Intelligence, 52(5):5561–5583.
|
|
10 |
Hu, H., Kantardzic, M., and Sethi, T. S. (2020). No free lunch theorem for concept drift
detection in streaming data classification: A review. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, 10(2):e1327.
|
|
11 |
Li, X., Li, H., Lu, H., Jensen, C. S., Pandey, V., and Markl, V. (2023). Missing value imputation for multi-attribute sensor data streams via message propagation. Proceedings
of the VLDB Endowment, 17(3):345–358.
|
|
12 |
Lin, W.-C. and Tsai, C.-F. (2020). Missing value imputation: a review and analysis of the
literature (2006–2017). Artificial Intelligence Review, 53:1487–1509.
|
|
13 |
Little, R. J. and Rubin, D. B. (2019). Statistical analysis with missing data, volume 793.
John Wiley & Sons, Hoboken, New Jersey, USA.
|
|
14 |
Liu, W., Luo, L., and Zhou, L. (2023). Online missing value imputation for high-
dimensional mixed-type data via generalized factor models. Computational Statistics
& Data Analysis, 187:107822.
|
|
15 |
Mahdi, O. A., Ali, N., Pardede, E., Alazab, A., Al-Quraishi, T., and Das, B. (2024).
Roadmap of concept drift adaptation in data stream mining, years later. IEEE Access,
12.
|
|
16 |
Ren, L., Wang, T., Seklouli, A. S., Zhang, H., and Bouras, A. (2023). A review on missing
values for main challenges and methods. Information Systems, page 102268.
|
|
17 |
Sun, Z., Zeng, G., and Ding, C. (2020). Imputation for missing items in a stream data
based on gamma distribution. In International Conference on Smart Computing and
Communication, pages 236–247. Springer.
|
|
18 |
Zhang, Y. and Thorburn, P. J. (2022). Handling missing data in near real-time environmental monitoring: A system and a review of selected methods. Future Generation Computer Systems, 128:63–72.
|
|