1 |
Ahola, V., Aittokallio, T., Vihinen, M. and Uusipaikka, E. (2008). Model-based prediction of sequence alignment quality. Bioinformatics (Oxford, England), v. 24, n. 19, p. 2165–2171.
|
|
2 |
Boulos, J., Dalvi, N., Mandhani, B., et al. (2005). MYSTIQ: A System for Finding More Answers by Using Probabilities. In Int. Conf. Management of Data (SIGMOD), pp. 891-893.
|
|
3 |
Chapman, A., Blaustein, B. and Elsaesser, C. (2010). Provenance-based Belief. In Workshop on the Theory and Practice of Provenance (TaPP). p. 11.
|
|
4 |
Costa, F., Silva, V., De Oliveira, D., et al. (2013). Capturing and Querying Workflow Runtime Provenance with PROV: A Practical Approach. In EDBT/ICDT Workshops, pp. 282-289.
|
|
5 |
De Oliveira, D., Silva, V. and Mattoso, M. (2015). How Much Domain Data Should Be in Provenance Databases? In Workshop on Theory and Practice of Provenance (TaPP).
|
|
6 |
Freire, J., Koop, D., Santos, E. and Silva, C. T. (2008). Provenance for Computational Tasks: A Survey. Computing in Science Engineering, v. 10, n. 3, p. 11–21.
|
|
7 |
Gonçalves, J. C. de A. R., Oliveira, D. De, Ocaña, K. A. C. S., Ogasawara, E. and Mattoso, M. (2012). Using Domain-Specific Data to Enhance Scientific Workflow Steering Queries. In International Provenance and Annotation Workshop (IPAW), pp. 152–167.
|
|
8 |
Huang, J., Antova, L., Koch, C. and Olteanu, D. (2009). MayBMS: A Probabilistic Database Management System. In Int. Conf. Management of Data (SIGMOD), pp. 1071-1071.
|
|
9 |
Idika, N., Varia, M. and Phan, H. (2013). The Probabilistic Provenance Graph. In IEEE Security and Privacy Workshops (SPW), pp 34-41.
|
|
10 |
Mattoso, M., Werner, C., Travassos, G. H., et al. (2010). Towards supporting the life cycle of large scale scientific experiments. Int. Journal of Business Process Integration and Management, v. 5, n. 1, p. 79.
|
|
11 |
Moreau, L., Clifford, B., Freire, J., et al. (2011). The Open Provenance Model core specification (v1.1). Future Generation Computer Systems, v. 27, n. 6, p. 743–756.
|
|
12 |
Moreau, L. and Missier, P. (2013). The PROV Data Model and Abstract Syntax Notation. W3C Recommendation.
|
|
13 |
Ocaña, K. A. C. S., Oliveira, D. De, Ogasawara, E., et al. (2011). SciPhy: A Cloud-Based Workflow for Phylogenetic Analysis of Drug Targets in Protozoan Genomes. In Advances in Bioinformatics and Computational Biology, pp. 66-70.
|
|
14 |
Ogasawara, E., Dias, J., Oliveira, D., et al. (2011). An Algebraic Approach for Data-Centric Scientific Workflows. Proc. of the Int. Conf. on Very Large Data Bases (PVLDB), v. 4, n. 12, p. 1328–1339.
|
|
15 |
Re, C. and Suciu, D. (2007). Management of Data with Uncertainties. In Conference on Information and Knowledge Management (CIKM), pp. 3-8.
|
|
16 |
Simmhan, Y. L., Plale, B. and Gannon, D. (2008). Query capabilities of the Karma provenance framework. Concurrency and Computation: Practice and Experience, v. 20, n. 5, p. 441–451.
|
|