1 |
Allemang, D. and Hendler, J. (2011). Semantic web for the working ontologist: effective modeling in RDFS and OWL. Elsevier.
|
|
2 |
Angles, R., Arenas, M., Barceló, P., Hogan, A., Reutter, J., and Vrgoc, D. (2017). Foundations of modern query languages for graph databases. ACM Computing Surveys (CSUR), 50(5):1–40.
|
|
3 |
Angles, R. and Gutierrez, C. (2008). Survey of graph database models. ACM Computing Surveys (CSUR), 40(1):1–39.
|
|
4 |
Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., and Yakhnenko, O. (2013). Translating embeddings for modeling multi-relational data. Advances in neural information processing systems, 26.
|
|
5 |
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot learners. Advances in neural information processing systems, 33:1877–1901.
|
|
6 |
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
|
|
7 |
Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., Dai, Y., Sun, J., and Wang, H. (2023). Retrieval-augmented generation for large language models: A survey. arXiv preprint arXiv:2312.10997.
|
|
8 |
Henderson, M., Al-Rfou, R., Strope, B., Sung, Y.-H., Lukács, L., Guo, R., Kumar, S., Miklos, B., and Kurzweil, R. (2017). Efficient natural language response suggestion for smart reply. arXiv preprint arXiv:1705.00652.
|
|
9 |
Hogan, A., Blomqvist, E., Cochez, M., D’amato, C., Melo, G. D., Gutierrez, C., Kirrane, S., Gayo, J. E. L., Navigli, R., Neumaier, S., Ngomo, A.-C. N., Polleres, A., Rashid, S. M., Rula, A., Schmelzeisen, L., Sequeda, J., Staab, S., and Zimmermann, A. (2021). Knowledge graphs. ACM Comput. Surv., 54(4).
|
|
10 |
Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler, H., Lewis, M., Yih, W.-t., Rocktäschel, T., et al. (2020). Retrieval-augmented generation for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:9459–9474.
|
|
11 |
Manning, C. D. (2008). Introduction to information retrieval. Syngress Publishing,.
|
|
12 |
Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
|
|
13 |
Graph database applications and concepts with neo4j. In Proceedings of the southern association for information systems conference, Atlanta, GA, USA, volume 2324, pages 141–147.
|
|
14 |
Nickel, M., Murphy, K., Tresp, V., and Gabrilovich, E. (2016). A review of relational machine learning for knowledge graphs. Proceedings of the IEEE, 104(1):11–33.
|
|
15 |
Pandya, K. and Holia, M. (2023). Automating customer service using langchain: Building custom open-source gpt chatbot for organizations. arXiv preprint arXiv:2310.05421.
|
|
16 |
Paulheim, H. (2017). Knowledge graph refinement: A survey of approaches and evaluation methods. Semantic web, 8(3):489–508.
|
|
17 |
Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pages 1532–1543.
|
|
18 |
Robinson, I.,Webber, J., and Eifrem, E. (2015). Graph databases: new opportunities for connected data. " O’Reilly Media, Inc.".
|
|
19 |
Rogers, A., Kovaleva, O., and Rumshisky, A. (2021). A primer in bertology: What we know about how bert works. Transactions of the Association for Computational Linguistics, 8:842–866.
|
|
20 |
Suchanek, F. M., Kasneci, G., and Weikum, G. (2007). Yago: a core of semantic knowledge. In Proceedings of the 16th International Conference on World Wide Web, WWW ’07, page 697–706, New York, NY, USA. Association for Computing Machinery.
|
|
21 |
A survey on application of knowledge graph. In Journal of Physics: Conference Series, volume 1487, page 012016. IOP Publishing.
|
|