1 |
[ogc 2023] (2023). The Home of Location Technology Innovation and Collaboration | OGC.
[Online; accessed 7. Aug. 2023].
|
|
2 |
[Barbosa et al. 2018] Barbosa, H., Barthelemy, M., Ghoshal, G., James, C. R., Lenormand,
M., Louail, T., Menezes, R., Ramasco, J. J., Simini, F., e Tomasini, M. (2018). Human
mobility: Models and applications. Physics Reports, 734:1–74.
|
|
3 |
[Bolstad 2016] Bolstad, P. (2016). GIS Fundamentals: A First Text on Geographic Information Systems. Eider Press, 5 edition.
|
|
4 |
[Castro et al. 2012] Castro, P. S., Zhang, D., e Li, S. (2012). Urban traffic modelling and
prediction using large scale taxi gps traces. In International Conference on Pervasive
Computing, pages 57–72. Springer.
|
|
5 |
[Cebrian 2021] Cebrian, M. (2021). The past, present and future of digital contact tracing.
Nature Electronics, 4(1):2–4.
|
|
6 |
[Celes et al. 2017] Celes, C., Silva, F. A., Boukerche, A., d. C. Andrade, R. M., e Loureiro,
A. A. F. (2017). Improving vanet simulation with calibrated vehicular mobility traces.
IEEE Transactions on Mobile Computing, 16(12):3376–3389.
|
|
7 |
[Chen et al. 2017] Chen, G., Viana, A. C., e Sarraute, C. (2017). Towards an adaptive completion of sparse call detail records for mobility analysis. In 2017 IEEE international
conference on pervasive computing and communications workshops (PerCom workshops), pages 302–305. IEEE.
|
|
8 |
[Cho et al. 2011] Cho, E., Myers, S. A., e Leskovec, J. (2011). Friendship and mobility:
user movement in location-based social networks. In Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages
1082–1090.
|
|
9 |
[de Mattos et al. 2019] de Mattos, E. P., Domingues, A. C., e Loureiro, A. A. (2019). Give
me two points and i’ll tell you who you are. In 2019 IEEE Intelligent Vehicles Symposium (IV), pages 1081–1087. IEEE.
|
|
10 |
[de Melo et al. 2015] de Melo, P. O. V., Viana, A. C., Fiore, M., Jaffrès-Runser, K.,
Le Mouël, F., Loureiro, A. A., Addepalli, L., e Guangshuo, C. (2015). Recast: Telling
apart social and random relationships in dynamic networks. Performance Evaluation,
87:19–36.
|
|
11 |
[Domingues et al. 2022] Domingues, A. C., de Souza Santana, H., Silva, F. A., de Melo, P.
O. V., e Loureiro, A. A. (2022). Socialroute: A low-cost opportunistic routing strategy
based on social contacts. Ad Hoc Networks, 135:102949.
|
|
12 |
[Duckham e Kulik 2005a] Duckham, M. e Kulik, L. (2005a). A formal model of obfuscation and negotiation for location privacy. In International conference on pervasive
computing, pages 152–170. Springer.
|
|
13 |
[Duckham e Kulik 2005b] Duckham, M. e Kulik, L. (2005b). Simulation of obfuscation and
negotiation for location privacy. In International conference on spatial information
theory, pages 31–48. Springer.
|
|
14 |
[Ekman et al. 2008] Ekman, F., Keränen, A., Karvo, J., e Ott, J. (2008). Working day movement model. In Proceedings of the 1st ACM SIGMOBILE workshop on Mobility models, pages 33–40.
|
|
15 |
[Finkel e Bentley 1974] Finkel, R. A. e Bentley, J. L. (1974). Quad trees a data structure for
retrieval on composite keys. Acta informatica, 4(1):1–9.
|
|
16 |
[Firestone et al. 2011] Firestone, S. M., Ward, M. P., Christley, R. M., e Dhand, N. K.
(2011). The importance of location in contact networks: Describing early epidemic spread using spatial social network analysis. Preventive Veterinary Medicine,
102(3):185 – 195. Special Issue: GEOVET 2010.
|
|
17 |
[González et al. 2008] González, M. C., Hidalgo, C. A., e Barabási, A.-L. (2008). Understanding individual human mobility patterns. Nature, 453(7196):779–782.
|
|
18 |
[Gu et al. 2016] Gu, Y., Yao, Y., Liu, W., e Song, J. (2016). We know where you are: Home
location identification in location-based social networks. In 2016 25th International
Conference on Computer Communication and Networks (ICCCN), pages 1–9. IEEE.
|
|
19 |
[Guttman 1984] Guttman, A. (1984). R-trees: A dynamic index structure for spatial searching. In Proceedings of the 1984 ACM SIGMOD international conference on Management of data, pages 47–57.
|
|
20 |
[Hess et al. 2015] Hess, A., Hummel, K. A., Gansterer, W. N., e Haring, G. (2015). Datadriven human mobility modeling: a survey and engineering guidance for mobile networking. ACM Computing Surveys (CSUR), 48(3):1–39.
|
|
21 |
[Hoteit et al. 2016] Hoteit, S., Chen, G., Viana, A., e Fiore, M. (2016). Filling the gaps: On
the completion of sparse call detail records for mobility analysis. In Proceedings of
the Eleventh ACM Workshop on Challenged Networks, pages 45–50. ACM.
|
|
22 |
[Hung et al. 2009] Hung, C.-C., Chang, C.-W., e Peng, W.-C. (2009). Mining trajectory
profiles for discovering user communities. In Proceedings of the 2009 International
Workshop on Location Based Social Networks, pages 1–8.
|
|
23 |
[Ingole e Nichat 2013] Ingole, P. e Nichat, M. M. K. (2013). Landmark based shortest path
detection by using dijkestra algorithm and haversine formula. International Journal of
Engineering Research and Applications (IJERA), 3(3):162–165.
|
|
24 |
[Johnson e Watson 1984] Johnson, G. T. e Watson, I. D. (1984). The determination of viewfactors in urban canyons. Journal of Climate and Applied Meteorology, 23(2):329–335.
|
|
25 |
[Jurdak et al. 2015] Jurdak, R., Zhao, K., Liu, J., AbouJaoude, M., Cameron, M., e Newth,
D. (2015). Understanding human mobility from twitter. PloS one, 10(7):e0131469–
e0131469.
|
|
26 |
[Kang et al. 2004] Kang, J. H., Welbourne, W., Stewart, B., e Borriello, G. (2004). Extracting places from traces of locations. In Proceedings of the 2nd ACM international
workshop on Wireless mobile applications and services on WLAN hotspots, pages 110–
118. ACM.
|
|
27 |
[Kosta et al. 2012] Kosta, S., Mei, A., e Stefa, J. (2012). Large-scale synthetic social mobile
networks with swim. IEEE Transactions on Mobile Computing, 13(1):116–129.
|
|
28 |
[Krumm 2009] Krumm, J. (2009). A survey of computational location privacy. Personal
and Ubiquitous Computing, 13(6):391–399.
|
|
29 |
[Lisboa Filho e Iochpe 2001] Lisboa Filho, J. e Iochpe, C. (2001). Modelagem de bancos
de dados geográficos. In Apostila do XX Congresso Brasileiro de Cartografia, Porto
Alegre.
|
|
30 |
[Maouche et al. 2017] Maouche, M., Mokhtar, S. B., e Bouchenak, S. (2017). Ap-attack: a
novel user re-identification attack on mobility datasets. In Proceedings of the 14th EAI
International Conference on Mobile and Ubiquitous Systems: Computing, Networking
and Services, pages 48–57. ACM.
|
|
31 |
[Marques-Neto et al. 2018] Marques-Neto, H. T., Xavier, F. H., Xavier, W. Z., Malab, C.
H. S., Ziviani, A., Silveira, L. M., e Almeida, J. M. (2018). Understanding human
mobility and workload dynamics due to different large-scale events using mobile phone
data. Journal of Network and Systems Management, 26(4):1079–1100.
|
|
32 |
[Morales et al. 2017] Morales, A. J., Vavilala, V., Benito, R. M., e Bar-Yam, Y. (2017).
Global patterns of synchronization in human communications. Journal of the Royal
Society Interface, 14(128):20161048.
|
|
33 |
[Morton 1966] Morton, G. M. (1966). A computer oriented geodetic data base and a new
technique in file sequencing.
|
|
34 |
[Motlagh et al. 2016] Motlagh, N. H., Taleb, T., e Arouk, O. (2016). Low-altitude unmanned aerial vehicles-based internet of things services: Comprehensive survey and
future perspectives. IEEE Internet of Things Journal, 3(6):899–922.
|
|
35 |
[Naboulsi et al. 2016] Naboulsi, D., Fiore, M., Ribot, S., e Stanica, R. (2016). Largescale mobile traffic analysis: a survey. IEEE Communications Surveys & Tutorials,
18(1):124–161.
|
|
36 |
[Newson e Krumm 2009] Newson, P. e Krumm, J. (2009). Hidden markov map matching
through noise and sparseness. In Proceedings of the 17th ACM SIGSPATIAL international conference on advances in geographic information systems, pages 336–343.
|
|
37 |
[Pappalardo et al. 2015] Pappalardo, L., Simini, F., Rinzivillo, S., Pedreschi, D., Giannotti,
F., e Barabási, A.-L. (2015). Returners and explorers dichotomy in human mobility.
Nature communications, 6(1):8166.
|
|
38 |
[Rettore et al. 2020] Rettore, P. H., Santos, B. P., Lopes, R. R. F., Maia, G., Villas, L. A., e
Loureiro, A. A. (2020). Road data enrichment framework based on heterogeneous data
fusion for its. IEEE Transactions on Intelligent Transportation Systems, 21(4):1751–
1766.
|
|
39 |
[Sakai et al. 2014] Sakai, T., Tamura, K., e Kitakami, H. (2014). Extracting attractive localarea topics in georeferenced documents using a new density-based spatial clustering
algorithm. IAENG International Journal of Computer Science, 41(3):185–192.
|
|
40 |
[Silva et al. 2015] Silva, F. A., Celes, C., Boukerche, A., Ruiz, L. B., e Loureiro, A. A.
(2015). Filling the gaps of vehicular mobility traces. In Proceedings of the 18th ACM
International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, pages 47–54.
|
|
41 |
[Tran et al. 2013] Tran, K. A., Barbeau, S. J., e Labrador, M. A. (2013). Automatic identification of points of interest in global navigation satellite system data: A spatial temporal approach. In Proceedings of the 4th ACM SIGSPATIAL international workshop on
geostreaming, pages 33–42.
|
|
42 |
[Uber 2015] Uber (2015). H3: A hexagonal hierarchical geospatial indexing system.
|
|
43 |
[Wang e Taylor 2014] Wang, Q. e Taylor, J. E. (2014). Quantifying human mobility perturbation and resilience in hurricane sandy. PLoS one, 9(11).
|
|
44 |
[Zheng et al. 2014] Zheng, Y., Capra, L., Wolfson, O., e Yang, H. (2014). Urban computing:
concepts, methodologies, and applications. ACM Transactions on Intelligent Systems
and Technology (TIST), 5(3):1–55.
|
|