SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Estêvão Santos(estevaojs@gmail.com)
2 Tiago Almeida(talmeida@ufscar.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Batool, I., Fouda, M. M., and Fadlullah, Z. M. Deep Learning-Based Throughput Prediction in 5G Cellular Networks. In 2024 International Conference on Smart Applications, Communications and Networking (SmartNets). Institute of Electrical and Electronics Engineers (IEEE), 2024.
2 Boutiba, K., Bagaa, M., and Ksentini, A. Radio link failure prediction in 5G networks. In 2021 IEEE Global Communications Conference (GLOBECOM). IEEE, pp. 1–6, 2021.
3 Elsherbiny, H., Abbas, H. M., Abou-zeid, H., Hassanein, H. S., and Noureldin, A. 4g lte network throughput modelling and prediction. In GLOBECOM 2020 - 2020 IEEE Global Communications Conference. IEEE, pp. 1–6, 2020.
4 Ghosh, A., Maeder, A., Baker, M., and Chandramouli, D. 5G Evolution: A View on 5G Cellular Technology beyond 3GPP Release 15. IEEE Access vol. 7, pp. 127639–127651, 2019.
5 Hewamalage, H., Ackermann, K., and Bergmeir, C. Forecast evaluation for data scientists: common pitfalls and best practices. Data Mining and Knowledge Discovery vol. 37, pp. 788–832, 3, 2023.
6 Hyndman, R. J. A brief history of forecasting competitions. International Journal of Forecasting vol. 36, pp. 7–14, 1, 2020.
7 Hyndman, R. J. and Athanasopoulos, G. Forecasting: Principles and Practice. OTexts, Melbourne, Australia, 2021.
8 Januschowski, T., Gasthaus, J., Wang, Y., Salinas, D., Flunkert, V., Bohlke-Schneider, M., and Callot, L. Criteria for classifying forecasting methods. International Journal of Forecasting vol. 36, pp. 167–177, 1, 2020.
9 Makridakis, S., Spiliotis, E., and Assimakopoulos, V. M5 accuracy competition: Results, findings, and conclusions. International Journal of Forecasting vol. 38, pp. 1346–1364, 10, 2022.
10 Narayanan, A., Ramadan, E., Mehta, R., Hu, X., Liu, Q., Fezeu, R. A. K., Dayalan, U. K., Verma, S., Ji, P., Li, T., Qian, F., and Zhang, Z.-L. Lumos5G: Mapping and Predicting Commercial mmWave 5G Throughput. In Proceedings of the ACM SIGCOMM Internet Measurement Conference (IMC ’20). Association for Computing Machinery (ACM), pp. 176–193, 2020.
11 Raca, D., Leahy, D., Sreenan, C. J., and Quinlan, J. J. Beyond throughput, the next generation: A 5G dataset with channel and context metrics. MMSys 2020 - Proceedings of the 2020 Multimedia Systems Conference, 5, 2020.
12 Santos, G. L., Endo, P. T., Sadok, D., and Kelner, J. When 5g meets deep learning: A systematic review. Algorithms vol. 13, pp. 208, aug, 2020.
13 Sharma, A., Pandit, S., and Talluri, S. R. Throughput prediction of fifth-generation cellular system using hybrid feature selection and enhanced sequential decision tree machine learning algorithm. Wireless Networks vol. 31, pp. 3025–3042, 2025.
14 Yeaser, K. M. A. and Hassan, K. M. A. 5G NR V2X Throughput Prediction Using Deep Hybrid Learning. In Innovations in Electrical and Electronics Engineering: Proceedings of the 5th ICIEEL 2024, A. Kalam, S. Mekhilef, and S. S. Williamson (Eds.). Springer Nature Singapore, Singapore, pp. 685–693, 2025.
15 Yingjie, Z. and Abolghasemi, M. Local vs. global models for hierarchical forecasting, 2024. Available at: https://arxiv.org/abs/2411.06394v1. Accessed on: 5 Aug. 2025.