1 |
Batool, I., Fouda, M. M., and Fadlullah, Z. M. Deep Learning-Based Throughput Prediction in 5G Cellular Networks. In 2024 International Conference on Smart Applications, Communications and Networking (SmartNets). Institute of Electrical and Electronics Engineers (IEEE), 2024.
|
|
2 |
Boutiba, K., Bagaa, M., and Ksentini, A. Radio link failure prediction in 5G networks. In 2021 IEEE Global Communications Conference (GLOBECOM). IEEE, pp. 1–6, 2021.
|
|
3 |
Elsherbiny, H., Abbas, H. M., Abou-zeid, H., Hassanein, H. S., and Noureldin, A. 4g lte network throughput modelling and prediction. In GLOBECOM 2020 - 2020 IEEE Global Communications Conference. IEEE, pp. 1–6, 2020.
|
|
4 |
Ghosh, A., Maeder, A., Baker, M., and Chandramouli, D. 5G Evolution: A View on 5G Cellular Technology beyond 3GPP Release 15. IEEE Access vol. 7, pp. 127639–127651, 2019.
|
|
5 |
Hewamalage, H., Ackermann, K., and Bergmeir, C. Forecast evaluation for data scientists: common pitfalls and best practices. Data Mining and Knowledge Discovery vol. 37, pp. 788–832, 3, 2023.
|
|
6 |
Hyndman, R. J. A brief history of forecasting competitions. International Journal of Forecasting vol. 36, pp. 7–14, 1, 2020.
|
|
7 |
Hyndman, R. J. and Athanasopoulos, G. Forecasting: Principles and Practice. OTexts, Melbourne, Australia, 2021.
|
|
8 |
Januschowski, T., Gasthaus, J., Wang, Y., Salinas, D., Flunkert, V., Bohlke-Schneider, M., and Callot, L. Criteria for classifying forecasting methods. International Journal of Forecasting vol. 36, pp. 167–177, 1, 2020.
|
|
9 |
Makridakis, S., Spiliotis, E., and Assimakopoulos, V. M5 accuracy competition: Results, findings, and conclusions. International Journal of Forecasting vol. 38, pp. 1346–1364, 10, 2022.
|
|
10 |
Narayanan, A., Ramadan, E., Mehta, R., Hu, X., Liu, Q., Fezeu, R. A. K., Dayalan, U. K., Verma, S., Ji, P., Li, T., Qian, F., and Zhang, Z.-L. Lumos5G: Mapping and Predicting Commercial mmWave 5G Throughput. In Proceedings of the ACM SIGCOMM Internet Measurement Conference (IMC ’20). Association for Computing Machinery (ACM), pp. 176–193, 2020.
|
|
11 |
Raca, D., Leahy, D., Sreenan, C. J., and Quinlan, J. J. Beyond throughput, the next generation: A 5G dataset with channel and context metrics. MMSys 2020 - Proceedings of the 2020 Multimedia Systems Conference, 5, 2020.
|
|
12 |
Santos, G. L., Endo, P. T., Sadok, D., and Kelner, J. When 5g meets deep learning: A systematic review. Algorithms vol. 13, pp. 208, aug, 2020.
|
|
13 |
Sharma, A., Pandit, S., and Talluri, S. R. Throughput prediction of fifth-generation cellular system using hybrid feature selection and enhanced sequential decision tree machine learning algorithm. Wireless Networks vol. 31, pp. 3025–3042, 2025.
|
|
14 |
Yeaser, K. M. A. and Hassan, K. M. A. 5G NR V2X Throughput Prediction Using Deep Hybrid Learning. In Innovations in Electrical and Electronics Engineering: Proceedings of the 5th ICIEEL 2024, A. Kalam, S. Mekhilef, and S. S. Williamson (Eds.). Springer Nature Singapore, Singapore, pp. 685–693, 2025.
|
|
15 |
Yingjie, Z. and Abolghasemi, M. Local vs. global models for hierarchical forecasting, 2024. Available at: https://arxiv.org/abs/2411.06394v1. Accessed on: 5 Aug. 2025.
|
|