SBBD

Paper Registration

1

Select Book

2

Select Paper

3

Fill in paper information

4

Congratulations

Fill in your paper information

English Information

(*) To change the order drag the item to the new position.

Authors
# Name
1 Danilo Seufitelli(daniloboechat@dcc.ufmg.br)
2 Mirella Moro(mirella@dcc.ufmg.br)

(*) To change the order drag the item to the new position.

Reference
# Reference
1 Amorim, A. et al. (2022). Modelagem de tópicos em textos curtos: uma avaliação experimental. In Anais do XXXVII SBBD, pages 254–266, Búzios, RJ. SBC.
2 Baldo, F., Grando, J., Weege, K., and Bonassa, G. (2022). Adaptive fast xgboost for binary classification. In Anais do XXXVII SBBD, pages 13–25, Búzios, RJ. SBC.
3 Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine Learning Research, 3:993–1022.
4 Byrd, D. and Crawford, T. (2002). Problems of music information retrieval in the real world. Information Processing & Management, 38(2):249–272.
5 Cosimato, A. et al. (2019). The conundrum of success in music: Playing it or talking about it? IEEE Access, 7:123289–123298.
6 Crepinšek, M., Liu, S.-H., and Mernik, M. (2013). Exploration and exploitation in evolutionary algorithms: A survey. ACM Computing Surveys (CSUR), 45(3):1–33.
7 Keogh, E. J. and Pazzani, M. J. (2000). Scaling up dynamic time warping for datamining applications. In SIGKDD, pages 285–289. ACM.
8 Liu, L. et al. (2018). Hot streaks in artistic, cultural, and scientific careers. Nature, 559(7714):396–399.
9 Liu, L. et al. (2021). Understanding the onset of hot streaks across artistic, cultural, and scientific careers. Nature Communications, 12(1):5392.
10 Martín-Gutiérrez, D. et al. (2020). A multimodal end-to-end deep learning architecture for music popularity prediction. IEEE Access, 8:39361–39374.
11 Oliveira, G. P. et al. (2020). Detecting collaboration profiles in success-based music genre networks. In ISMIR, pages 726–732.
12 Pachet, F. (2011). Hit song science. In Tao Li, Mitsunori Ogihara, G. T., editor, Music Data Mining, chapter 10, pages 305–326. CRC Press, New York, NY, USA.
13 Passman, D. (2019). All You Need to Know About the Music Business: 10th Edition. Simon & Schuster, New York.
14 Seufitelli, D. B., Oliveira, G. P., Silva, M. O., Barbosa, G. R. G., Melo, B. C., Botelho, J. E., Melo-Gomes, L. d., and Moro, M. M. (2022). From compact discs to streaming: A comparison of eras within the Brazilian market. Revista Vórtex, 10(1):1–28.
15 Silva, M. O., Rocha, L. M., and Moro, M. M. (2019). Collaboration Profiles and Their Impact on Musical Success. In ACM SAC, pages 2070–2077, Limassol, Cyprus.
16 Yucesoy, B. and Barabási, A.-L. (2016). Untangling performance from success. EPJ Data Science, 5(1):17.